Enthalpy change is the difference between energy used and energy gained. The change in enthalpy of the liquid mercury is 0.0231 kJ.
<h3>What is the enthalpy change?</h3>
Enthalpy change is the difference between the energy used to break chemical bonds and the energy gained by the products formed in a chemical reaction.
The enthalpy change is given by,

and,

Given,
Mass of the liquid mercury (m) = 11.0 gm
The specific heat of mercury (c) = 0.14 J per g per degree Celsius
Temperature change = 15 degrees Celsius
Enthalpy change is calculated as:

Therefore, 0.0231 kJ is the change in enthalpy.
Learn more about enthalpy change here:
brainly.com/question/10932978
#SPJ4
Answer:
D
Explanation:I alredy know this i am in 7th gread
The balanced equation for the reaction is as follows;
Ca(OH)₂ + 2HBr --> CaBr₂ + 2H₂O
stoichiometry of Ca(OH)₂ to HBr is 1:2
number of Ca(OH)₂ moles reacted - 0.10 mol/L x 0.1000 L = 0.010 mol
Number of HBr moles added - 0.10 mol/L x 0.4000 = 0.040 mol
1 mol of Ca(OH)₂ needs 2 mol of HBr for neutralisation
therefore 0.010 mol of Ca(OH)₂ needs - 0.010 x 2 = 0.020 mol of HBr to be neutralised
but 0.040 mol of HBr has been added therefore number of moles of HBr in excess - 0.040 - 0.020 = 0.020 mol
then pH of the medium can be calculated using the excess H⁺ ions
HBr is a strong acid therefore complete ionization
[HBr] = [H⁺]
[H⁺] = 0.020 mol / (100.0 + 400.0 mL)
= 0.020 mol / 0.5 L
= 0.040 mol/L
pH = -log[H⁺]
pH = - log [0.040 M]
pH = 1.40
pH of the medium is 1.40
Genetic engineering also called transformation
Answer:
H₂O is the limiting reactant
Theoretical yield of 240 g Al₂O₃ and 14 g H₂
Explanation:
Find how many moles of one reactant is needed to completely react with the other.
6.5 mol Al × (3 mol H₂O / 2 mol Al) = 9.75 mol H₂O
We need 9.75 mol of H₂O to completely react with 6.5 mol of Al. But we only have 7.2 mol of H₂O. Therefore, H₂O is the limiting reactant.
Now find the theoretical yield:
7.2 mol H₂O × (1 mol Al₂O₃ / 3 mol H₂O) × (102 g Al₂O₃ / mol Al₂O₃) ≈ 240 g Al₂O₃
7.2 mol H₂O × (3 mol H₂ / 3 mol H₂O) × (2 g H₂ / mol H₂) ≈ 14 g H₂
Since the data was given to two significant figures, we must round our answer to two significant figures as well.