Answer:
p = 6.64 cm
Explanation:
For this exercise we use the equation of the constructor

where f is the focal length, p and q are the distance to the object and the image, respectively
They tell us the focal length f = 2.2 cm and that the image as far as it can go is q = 3.29 cm, let's find the position of the object that creates this image
1 / p = 1 / 2.2 - 1/3.29
1 / p = 0.15059
p = 6.64 cm
therefore the farthest distance from the object is 6.64 c
Answer:
A
Explanation:
what more to say.. :| it's the distance from x to a crest or trough
The acceleration due to gravity is given as:
g = GM/r²
<h3>
Derivation of gravitational acceleration:</h3>
According to Newton's second law of motion,
F = ma
where,
F = force
m = mass
a = acceleration
According to Newton's law of gravity,
F<em>g </em>= GMm/(r + h)²
F<em>g = </em>gravitational force
From Newton's second law of motion,
F<em>g </em>= ma
a = F<em>g</em>/m
We can refer to "a" as "g"
a = g = GMm/(m)(r + h)²
g = GM/(r + h)²
When the object is on or close to the surface, the value of g is constant and height has no considerable impact. Hence, it can be written as,
g = GM/r²
Learn more about gravitational acceleration here:
brainly.com/question/2142879
#SPJ4
Answer:
A. F=6.65*10^{-10}N
B. south - north
Explanation:
A) We use the Lorentz force
F = qv X B
|F| = qvB
to calculate the magnitude of the force we need the speed of the of the ball.

and by replacing in the formula for the magnitude of the force we have (taking into account the excess of electrons)

B)
b. south - north (by the rigth hand rule)
I hope this is usefull for you
regards