If the absorbance of a solution of curcumin which is too concentrated is measured, the absorbance will be unusually high.
Spectrometry measures the interaction of light with molecules. The absorbance refers to how much light that interacts with molecules of the substance. The more the concentration of the substance the higher the absorbance of the solution.
Hence, if the absorbance of a solution of curcumin which is too concentrated is measured, the absorbance will be unusually high. An unusually high absorbance tells us that the solution is too concentrated.
Learn more: brainly.com/question/13440572
Answer:
Hydrogen = 2.5 * 10^21
Explanation:
Chemical Formula Glucose: C₆H₁₂O₆
One of the ways you could do this is to notice that for every carbon atom there are two Hydrogen atoms. You can state this more formally by using the formula to set up a ratio: 12/6 = hydrogen to Carbon
So if there are 1.250 * 10^21 Carbon atoms in the Glucose sample, then there will be twice as many hydrogen atoms.
H = 2 * 1.25 * 10^21 = 2.5 * 10^21 atoms
You could do this more formally by setting up a proportion.
6 Carbon / 12 Hydrogen = 1.25*10^21 / x Cross Multiply
6*x = 12 * 1.25*10^21 Combine the right
6x = 1.5 * 10^22 Divide by 6
x = 2.5 * 10^21
You can solve this by using the equation (P1V1/T1) = (P2V2/T2). Plug in 0.50 atm for P1, leave V1 as the unknown, and plug in 325 K as T1. Then substitute 1.2 atm for P2, 48 L for V2, and 320 K for T2. Solve for V1, which is 117L, but since you round using two sig figs, your answer is C, 120 L. Hope this helps!
The energy generated by the movement of electrons is used to pump electrons across the inner mitochondrial membrane to an area of higher concentration. 17. Where do these protons (H+) come from? The originally came from a glucose molecule and were carried to the electron transport chain by NADH and FADH2.
The answer would be glucose molecule.
What they have in common is that they both have the same number of atoms.