Answer:
Explanation:
SODIUM ATOM;
SODIUM ATOM IS NEUTRAL
SODIUM ION;
IT IS A CHARGED SPECIE WITH A CHARGE OF +1
SODIUM ATOM:
THE NUMBER OF PROTONS AND ELECTRONS ARE SAME ie:11
SODIUM ION:
NUMBER OF PROTONS AND ELECTRONS ARE NOT SAME ie. ELETRON: 10, PROTONS:11
HOPE IT WILL HELP:)
Answer:
The main difference between the two models is <em>the position of the electron in the atom</em>.
Explanation:
- <em>Bohr model:</em> The electrons are moved around the nucleus in circular definite paths (orbitals or shells). Also, he could not find or detect the exact position of electron.
- <em>Electron cloud model:</em> It is supposed by Erwin Schrodinger. He showed that the emission spectra of the atom is the way to detect the probability of electron position.
Answer : The ratio of the protonated to the deprotonated form of the acid is, 100
Explanation : Given,

pH = 6.0
To calculate the ratio of the protonated to the deprotonated form of the acid we are using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
Now put all the given values in this expression, we get:
![6.0=8.0+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=6.0%3D8.0%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
As per question, the ratio of the protonated to the deprotonated form of the acid will be:
Therefore, the ratio of the protonated to the deprotonated form of the acid is, 100
I believe it is either A or B
Answer is: chemical.
Making a pancake from batter is chemical change (chemical reaction), because new substances are formed, the atoms are rearranged and the reaction is followed by an energy change.
Batter is thin dough that is poured into a pan to make pancakes.
In physical change, the same substance is present before and after the psysical change, just with different form or state of matter.