Answer:
2.4 moles of oxygen are needed to react with 87 g of aluminium.
Explanation:
Chemical equation:
4Al(s) + 3O₂(l) → 2AlO₃(s)
Given data:
Mass of aluminium = 87 g
Moles of oxygen needed = ?
Solution:
Moles of aluminium:
Number of moles of aluminium= Mass/ molar mass
Number of moles of aluminium= 87 g/ 27 g/mol
Number of moles of aluminium= 3.2 mol
Now we will compare the moles of aluminium with oxygen.
Al : O₂
4 : 3
3.2 : 3/4×3.2 = 2.4 mol
2.4 moles of oxygen are needed to react with 87 g of aluminium.
The element which has the electronic configuration is CHLORINE.
The atomic number of chlorine is 17 and it has 7 valence electrons in its outermost shell. Because it needs only one more electrons to have a stable octet, it usually react with metals from group one of the periodic table who are normally willing to donate the single electrons in their outermost shells. The ground state electronic configuration of chlorine atom is 1S^2 2S^2 2P^6 3S^2 3P^5.
Answer:
Hey do you know if "horsleyjaydyn" is a girl you commented once she was a guy so
Explanation:
Sodium. 11
Carbon. 12
Hydrogen 1
Oxygen 2
Fluuorine. 14
Boron. 5
Lithium. 6
Helium 3
Phosphorus 15
Sulfur 6
Concentration is the number of moles of solute in a fixed volume of solution
Concentration(c) = number of moles of solute(n) / volume of solution (v)
25.0 mL of water is added to 125 mL of a 0.150 M LiOH solution and solution becomes more diluted.
original solution molarity - 0.150 M
number of moles of LiOH in 1 L - 0.150 mol
number of LiOH moles in 0.125 L - 0.150 mol/ L x 0.125 L = 0.01875 mol
when 25.0 mL is added the number of moles of LiOH will remain constant but volume of the solution increases
new volume - 125 mL + 25 mL = 150 mL
therefore new molarity is
c = 0.01875 mol / 0.150 L = 0.125 M
answer is 0.125 M