The bad smelling element is Sulfur, which smells like rotting eggs.
Answer:
Molarity of Na₂CO₃ = 0.25M
% mass = 2.69
Explanation:
Molarity means mole of solute in 1L of solution
Molar mass of solute (Na₂CO₃) = 105,98 g/m
Moles = mass / molar mass → 6.73 g / 105.98 g/m = 0.0635 m
Mol/L = [M]
0.0635 mol/0.250L = 0.25M
Density of solution = Solution mass / Solution volume
1 g/ml = Solution mass / 250 mL → Solution mass is 250g
% mass will be:
In 250 g of solution we have 6.73 g of solute
in 100 g of solution we have (100 . 6.73)/250 = 2.69
Answer:
1.35 × 10⁴ kg/m³ at 22 °C; 1.34 × 10⁴ kg/m³ at 100 °C
Explanation:
The cubic expansivity (γ) of a liquid is the fractional change in volume per unit change in temperature.
Multiply by V₀ΔT and transpose
ΔV = γV₀ΔT
and
V = V₀ + ΔV
===============
<em>At 0 °C
</em>
Assume you have 1 m³ of Hg
ρ = m/V Multiply by V and transpose
m = ρV
ρ = 1.36 × 10⁴ kg/m³
m = 1.36 × 10⁴ × 1 = 1.36 × 10⁴ kg
===============
<em>At 22 °C
</em>
Assume that you have 1 m³ of Hg
γ = 180 × 10⁻⁶ K⁻¹
ΔT = 22 °C – 0 °C = 22 °C
ΔV = 180 × 10⁻⁶ × 22
ΔV = 3.96 × 10⁻³ m³ Calculate volume
V = 1 + 0.00396
V = 1.00396 m³ Calculate density
ρ = 1.36 × 10⁴/1.00396
ρ = 1.35 × 10⁴ kg/m³
===============
<em>At 100 °C
</em>
ΔT = 100 °C – 0 °C = 100 °C
ΔV = 180 × 10⁻⁶ × 100
ΔV = 0.0180 m³ Calculate volume
V = 1 + 0.0180
V = 1.0180 m³ Calculate density
ρ = 1.36 × 10⁴/1.0180
ρ = 1.34 × 10⁴ kg/m³
Answer:
D
Explanation:
salt molecules evenly distributed after shaking