Answer:
Explanation:
Pie charts generally should have no more than eight segments.
Answer:
They moved fresh water around their vast empire with aqueducts and canals.
Explanation:
Where loads are likely to be on continuously, the calculated load for branch circuits and feeders must be figured at 125%.
Section 210.19(A)(1) permits the bigger of the two values listed below to be utilized as the connectors 's ultimate size for sizing an ungrounded branch circuit conductor:
Without any extra adjustments or corrections, either 125% of the continuous load, OR
When adjustment and corrective factors are applied, the load is 100% (not 125% as stated previously).
This will be the same in the 2020 NEC. The introduction of new exception 2 is what has changed. To comprehend this new exception, one must study it very carefully. A part of a branch circuit connected to pressure connectors (such as power distribution blocks) that complies with 110.14(C)(2) may now be sized using the continuous load plus the noncontiguous load instead of 125% of the continuous load thanks to the new exception.
To know more about connectors click here:
brainly.com/question/16987039
#SPJ4
Answer:
(A) Because the angle of twist of a material is often used to predict its shear toughness
Explanation:
In engineering, torsion is the solicitation that occurs when a moment is applied on the longitudinal axis of a construction element or mechanical prism, such as axes or, in general, elements where one dimension predominates over the other two, although it is possible to find it in diverse situations.
The torsion is characterized geometrically because any curve parallel to the axis of the piece is no longer contained in the plane initially formed by the two curves. Instead, a curve parallel to the axis is twisted around it.
The general study of torsion is complicated because under that type of solicitation the cross section of a piece in general is characterized by two phenomena:
1- Tangential tensions appear parallel to the cross section.
2- When the previous tensions are not properly distributed, which always happens unless the section has circular symmetry, sectional warps appear that make the deformed cross sections not flat.
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft