Answer:
The average thickness of the blubber is<u> 0.077 m</u>
Explanation:
Here, we want to calculate the average thickness of the Walrus blubber.
We employ a mathematical formula to calculate this;
The rate of heat transfer(H) through the Walrus blubber = dQ/dT = KA(T2-T1)/L
Where dQ is the change in amount of heat transferred
dT is the temperature gradient(change in temperature) i.e T2-T1
dQ/dT = 220 W
K is the conductivity of fatty tissue without blood = 0.20 (J/s · m · °C)
A is the surface area which is 2.23 m^2
T2 = 37.0 °C
T1 = -1.0 °C
L is ?
We can rewrite the equation in terms of L as follows;
L × dQ/dT = KA(T2-T1)
L = KA(T2-T1) ÷ dQ/dT
Imputing the values listed above;
L = (0.2 * 2.23)(37-(-1))/220
L = (0.2 * 2.23 * 38)/220 = 16.948/220 = 0.077 m
Here are 8 construction site safety tips:
Use caution when climbing on and off equipment.
Stay away from operating machinery.
Use caution around fall hazards.
Use the proper ladder height.
Keep an updated first aid kit.
Never use damaged equipment.
Never unplug a tool by the cord.
Be aware of surroundings at all times.
Answer:
that
I am not sure that this is the answer
but i hopethis will help you
Answer:
The statement regarding the mass rate of flow is mathematically represented as follows 
Explanation:
A junction of 3 pipes with indicated mass rates of flow is indicated in the attached figure
As a basic sense of intuition we know that the mass of the water that is in the pipe junction at any instant of time is conserved as the junction does not accumulate any mass.
The above statement can be mathematically written as

this is known as equation of conservation of mass / Equation of continuity.
Now we know that in a time 't' the volume that enter's the Junction 'O' is
1) From pipe 1 = 
1) From pipe 2 = 
Mass leaving the junction 'O' in the same time equals
From pipe 3 = 
From the basic relation of density, volume and mass we have

Using the above relations in our basic equation of continuity we obtain

Thus the mass flow rate equation becomes 