Answer:
6.4 m/s
Explanation:
From the equation of continuity
A1V1=A2V2 where A1 and V1 are area and velocity of inlet respectively while A2 and V2 are the area and velocity of outlet respectively


where r1 and r2 are radius of inlet and outlet respectively
v1 is given as 1.6 m/s
Therefore


Answer:
μ = 0.55
Explanation:
Given that
Normal weight = 1.8 x weight of person
N= 1.8 mg
We know that friction force Fr
Fr= μ N
μ=Coefficient of friction
N=Normal force
To find μ We have to equate friction and gravity force
Fr= Wt
μ N = m g
μ x 1.8 m g = m g
μ = 0.55
So the coefficient of friction will be 0.55.
Castor oil is increasingly becoming an important bio-based raw material for industrial applications. The oil is non-edible and can be extracted from castor seeds from the castor plant belonging to the family Euphorbiaceae. The oil is a mixture of saturated and unsaturated fatty acid esters linked to a glycerol. The presence of hydroxyl group, a double bond, carboxylic group and a long chain hydrocarbon in ricinoleic acid (a major component of the oil), offer several possibilities of transforming it into variety of materials. The oil is thus a potential alternative to petroleum-based starting chemicals for the production of materials with variety of properties. Despite this huge potential, very little has recently been reviewed on the use of castor oil as a bio-resource in the production of functional materials. This review therefore highlights the potential of castor oil in the production of these diverse materials with their projected global market potential. The review gives the background information of castor oil and its geographical availability, the properties and its uses as bio-based resource for synthesis of various materials. The review further highlights on the use of castor oil or ricinoleic acid as a green capping agent in the synthesis of nanomaterials.

Answer:
Neither a or b.
Explanation:
The distributor cap is cover which protects internal parts and holds contact between internal rotor and spark plug wires. When inspecting distributor caps there should be some carbon tracking which looks like bright white grease trails.
Answer:
V = 56.8 mV
Explanation:
When a current I flows across a circuit element, if we assume that the dimensions of the circuit are much less than the wavelength of the power source creating this current, there exists a fixed relationship between the power dissipated in the circuit element, the current I and the voltage V across it, as follows:
P = V*I
By definition, power is the rate of change of energy, and current, the rate of change of the charge Q, so we can replace P and I, as follows:
E/t = V*q/t ⇒ E = V*Q
Solving for V:
V = E/Q = 94.2 mJ /1.66 C = 56.8 mV