Answer:
h = 40.37 m
Explanation:
We will apply the law of conservation of energy to the skier in this case, as follows:

where,
m = mass of skier = 77 kg
g = acceleration due to gravity = 9.81 m/s²
vf = final speed = 30 m/s
vi = initial speed = 2 m/s
W_friction = Work done by friction and air resistance = 4000 J
Therefore,
![(77\ kg)(9.81\ m/s^2)h = \frac{1}{2}(77\ kg)[(30\ m/s)^2-(2\ m/s)^2] - 4000\ J\\\\h = \frac{34496\ J - 4000\ J}{755.37\ N}\\\\](https://tex.z-dn.net/?f=%2877%5C%20kg%29%289.81%5C%20m%2Fs%5E2%29h%20%3D%20%5Cfrac%7B1%7D%7B2%7D%2877%5C%20kg%29%5B%2830%5C%20m%2Fs%29%5E2-%282%5C%20m%2Fs%29%5E2%5D%20-%204000%5C%20J%5C%5C%5C%5Ch%20%3D%20%5Cfrac%7B34496%5C%20J%20-%204000%5C%20J%7D%7B755.37%5C%20N%7D%5C%5C%5C%5C)
<u>h = 40.37 m</u>
By calculating the crests, you can find the waves' frequency.
Hope this helps!
Answer:
for 
Where z=0 m is the position of Miss Piggy and z=4 m is the position of the speaker.
Explanation:
Assuming that Miss Piggy emits a sound wave that is in phase with the speaker, and that z=0 is the position of Miss Piggy and z=4 is the position of the speaker, we would have a superposition of two traveling sound waves. Furthermore let's assume that both waves have the same amplitude. The total resulting wave will be given by:
where
is the angular frequency of the traveling wave and
is the wave number defined as
.
is the wavelength of both traveling waves (they have the same wavelength because they have the same frequency).
where v is the speed of sound.
By using the trigonometric identity
we can rewrite
as
.
In order for the resulting wave to have maximum destructive interference, that is to be zero for any time t, we need to have



<h3>For common materials like many metals and compounds, the thermal expansion coefficient is inversely proportional to the melting point. Copper’s melting point is less than iron’s, so its thermal expansivity is greater.</h3>