1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luden [163]
3 years ago
14

When carbon bonds with oxygen,

Physics
1 answer:
Ierofanga [76]3 years ago
6 0

Answer:

Carbon dioxide

Explination:

I remember it from biology.

I hope this helps ^-^

You might be interested in
46. Can you take a walk in such a way that the distance
Vikki [24]

Answer: In a logical Pace forum subject to the distance

Explanation:

7 0
3 years ago
Use the work—energy theorem to solve each of these problems. You can use Newton's laws to check your answers. Neglect air resist
andreyandreev [35.5K]

Answer:

a) It is moving at 43.15\frac{m}{s^{2}} when reaches the ground.

b) It is moving at 101.44\frac{m}{s^{2}} when reaches the ground.

Explanation:

Work energy theorem states that the total work on a body is equal its change in kinetic energy, this is:

W=K_f-K_i (1)

with W the total work, Ki the initial kinetic energy and Kf the final kinetic energy. Kinetic energy is defined as:

K=\frac{mv^2}{2} (2)

with m the mass and v the velocity.

Using (2) on (1):

W=\frac{mv_f^2}{2}-\frac{mv_i^2}{2} (3)

In both cases the total work while the objects are in the air is the work gravity field does on them. Work is force times the displacement, so in our case is weight (w=mg) of the object times displacement (d):

W=Fd=wd=mgd (4)

Using (4) on (3):

mgd=\frac{mv_f^2}{2}-\frac{mv_i^2}{2} (5)

That's the equation we're going to use on a) and b).

a) Because the branch started form rest initial velocity (vi) is equal zero, using this and solving (5) for final velocity:

v_f=\sqrt{\frac{2mgd}{m}}=\sqrt{2gd}=\sqrt{2*9.8*95}

v_f=43.15\frac{m}{s^{2}}

b) In this case the final velocity of the boulder is instantly zero when it reaches its maximum height, another important thing to note is that in this case work is negative because weight is opposing boulder movement, so we should use -mgd:

-mgd=-\frac{mv_i^2}{2}

Solving for initial velocity (when the boulder left the volcano):

v_i=\sqrt{\frac{2mgd}{m}}=\sqrt{2gd}=\sqrt{2*9.8*525}

v_i=101.44 \frac{m}{s^{2}}

3 0
3 years ago
13. What's most intriguing about Titan's atmosphere?
sineoko [7]

Answer: There is an unsolved mystery surrounding Titan's atmosphere: Because methane is broken down by sunlight, scientists believe there is another source that replenishes what is lost. One potential source of methane is volcanic activity, but this has yet to be confirmed.

Explanation:

7 0
3 years ago
A climber pulls herself 8 meters upwards with a force of 150 Newtons. If it takes her 16 seconds to cover the 8 meters, how much
mr Goodwill [35]

Answer:

 P = 75 W

Explanation:

given,

Distance, L = 8 m

Force,F = 150 N

Time, t = 16 s

Work by the climber

Work done = Force x displacement

W = F. L

W = 150 x 8

W = 1200 J

We know,

Power =\dfrac{Work\ done}{time}

P =\dfrac{1200}{16}

 P = 75 W

Hence, Power climber is using to climb is equal to 75 W.

3 0
3 years ago
Birdman is flying horizontally at a
den301095 [7]

Answer:

68 m

Explanation:

Given that the horizontal velocity of the birdman = 17 m/s and

the height, h= 78 m.

The gravitational force is acting in the downward direction, so it will not change the horizontal speed.

The horizontal speed will remains be constant and will be equal to the initial horizontal speed of the turd.

Initially, the turd was also flying horizontally with the birdman, so the initial velocity of the turd is the same as the horizontal velocity of the birdman, i.e In the horizontal direction, u_0=17 m/s.

In the vertical direction, u = 0,

The distance to be traveled, in the direction of application of force, is equals to the height of the turd, i.e

s= 78 m

Let t be the time taken to cover a distance of 78 m.

Now, applying the equation of motion in the vertical direction,

s=ut+\frac 12 at^2

where u is the initial velocity and a is the acceleration due to gravity in the direction of displacement,s.

Here, a=g=9.81 m/s^2, so

78=0\times t +\frac 12 (9.81)t^2

\Rightarrow t^2=(78\times2)/9.81

\Rightarrow t = 4 seconds.

Hence, the time taken to reach the ground is 4 seconds.

As the horizontal speed, u_0=17 m/s, is constant throughout the journey, so

the horizontal distance covered by turd

= u\times t

= 17 \times 4 = 68 m.

So, the distance of landing from the start of the field is 68 m as the birdman releases a turd directly  above the start of the field.

Hence, the robot must hold the bucket at a distance of 68 m from the start of the field.

5 0
3 years ago
Other questions:
  • An observer is standing at a point balloon calculus find the rate at which
    14·1 answer
  • Write a message about an important aspect of life on earth to be sent beyond our solar system
    10·1 answer
  • Looking at this skier. If ht travels from point A to point B, then turns around and stops at point C, what is her total displace
    8·2 answers
  • Inertia ____.
    6·1 answer
  • List five items that you think would generate an electric field in your house
    14·1 answer
  • Is the speed of light faster in helium or air?
    7·1 answer
  • Do all solids have any similar properties
    14·1 answer
  • Positively charged particles consisting of two protons and two neutrons emitted by radioactive materials are
    15·2 answers
  • Kinetic Energy HELP! Brainly included
    14·1 answer
  • An object weighs 200N on earth What would be its mass on the moon
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!