Answer:
The fireman will continue to descend, but with a constant speed.
Explanation:
In kinetic friction <em>(which is the case discussed here) </em>since the fireman is already in motion because of a certain force, once the frictional force matches the normal force, the fireman will stop accelerating and continue moving at a constant rate with the original speed he had. We will need a force greater than the normal force acting on the fireman to cause a deceleration.
We need to understand the difference between static friction and kinetic friction.
Static friction occurs in objects that are stationary, while kinetic friction occurs in objects that are already in motion.
In static friction, when the frictional force matches the weight or normal force of the object, the object remains stationary.
While in kinetic friction, when the frictional force matches the normal force, the object will stop accelerating. This is the case of the fireman sliding down the pole as discussed above.
Answer:
True
Explanation:
because their is friction(e.g take a ruler rub it in your hair then put it on top of a piece of paper on the table then u will see the process)among the two objects.
Answer:
True
Explanation:
Given that Power whose unit is Watt equates to one joule of work per second. It implies that Power is directly proportional to the work done and inversely proportional to the time to do the work.
Therefore, in this case, the right answer to the question is that it is TRUE that the power is inversely proportional with time
Answer:
the car with the hay should slow to 16m/s if the bale of hay is dropped into it.
Explanation:
period of pendulum = time taken for 1 oscillation = time taken for 1 complete back and forth vibration
q1 ans is given in question its 1.5 sec
q2 ans is 1.5 sec longer than 1 sec period