1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aalyn [17]
3 years ago
8

If the tank is designed to withstand a pressure of 5 MPaMPa, determine the required minimum wall thickness to the nearest millim

eter using the maximum-shear-stress theory. Apply a factor of safety of 1.5 against yielding.
Engineering
1 answer:
dmitriy555 [2]3 years ago
4 0

Answer: hello some aspects of your question is missing below is the missing information

The gas tank is made from A-36 steel and has an inner diameter of 1.50 m.

answer:

≈ 22.5 mm

Explanation:

Given data:

Inner diameter = 1.5 m

pressure = 5 MPa

factor of safety = 1.5

<u>Calculate the required minimum wall thickness</u>

maximum-shear-stress theory ( σ allow ) = σγ / FS

                                                  = 250(10)^6 / 1.5  = 166.67 (10^6) Pa

given that |σ| = σ allow  

3.75 (10^6) / t = 166.67 (10^6)

∴ t ( wall thickness ) = 0.0225 m   ≈ 22.5 mm

You might be interested in
5. Which of the following is false about onStep?
katovenus [111]

The false statement about onStep is: B. The default number of steps per second is 30.

<h3>What is an onStep?</h3>

An onStep can be defined as a computerized telescope goto controller that is designed and developed to <u>animate shapes</u> while using it on a variety of mounting systems such as forks.

<h3>The characteristics of an onStep.</h3>

In Engineering, some of the characteristics that are associated with an onStep include the following:

  • The onStep function can be called without user input.
  • It can be used to animate shapes without user input.
  • It only runs a certain number of times.

In conclusion, the default number of steps per second for onStep isn't 30.

Read more on onStep here: brainly.com/question/25619349

7 0
2 years ago
Identify factors that can cause a process to become out of control. Give several examples of such factors.
Oliga [24]

Answer:

Explained

Explanation:

This situation can occur because of various factors such as:

  • Gradual deterioration of lubrication and coolant.
  • change of environmental condition such as temperature, humidity, moisture, etc.
  • Change in the properties of incoming raw material
  • An increase or decrease in the temperature of the heat treating operation
  • Debris interfering with the manufacturing process.
4 0
3 years ago
-Mn has a cubic structure with a0 = 0.8931 nm and a density of 7.47 g/cm3. -Mn has a different cubic structure, with a0 = 0.63
Fudgin [204]

Answer:

The percentage volume change is -3.0%

Explanation: We are to determine the percentage change that will occurs is alpha-Mn is transformed to beta-Mn

Value are defined as;

Cubic structure (a0) for alpha-Mn = 0.8931nm = 0.8931e-9m = 7.1236e-28cm3

Cubic structure (a0) for beta-Mn = 0.6326nm = 0.6326e-9m = 2.5316e-28cm3

Density of alpha-Mn = 7.47g/cm3

Density of beta-Mn = 7.26g/cm3

Atomic weight of Mn = 54.938g/mol

Atomic radius of Mn = 0.112nm

STEP1: CALCULATE THE ATOM NUMBER PER CELL IN THE ALPHA-Mn;

Atom per cell = (density × cubic structure × Avogadro's constant) ÷ (atomic weight ) × 100000

(7.47× 7.1236e-28 × 6.02e23) ÷ 54.938 = 58.31

Therefore the number of Atom in alpha-Mn is 58.31 atom per cell

STEP2: CALCULATE THE NUMBER OF ATOM PER CELL IN THE BETA-Mn

Atom per cell = (density × cubic structure × Avogadro's constant) ÷ (atomic weight) × 1000000

(7.26 × 2.5316e-28 × 6.02e23) ÷ 54.938 = 20.14

Therefore the number of Atom in beta-Mn is 20.14 atom per cell

STEP3: CALCULATE THE PERCENTAGE VOLUME OF ALPHA-Mn AND BETA-Mn

V% = [(volume of atom × number of atom per cell) ÷ volume of unit cell] × 1000

For Alpha-Mn:

[(1.4049e-30 × 58.31) ÷ 7.1236e-28] × 1000 = 114.998%

For Beta-Mn:

[(1.4049e-30 × 20.14) ÷ 2.5316e-28] × 1000 = 111.766%

STEP4: CALCULATE THE CHANGE IN PERCENTAGE VOLUME FOR ALPHA TO TRANSFORM TO BETA

change = final state - initial state

Therefore;

Change = 111.766 - 114.998 = -3.23%

Therefore for a transformation of Alpha-Mn to Beta-Mn they will be a decrease in volume

3 0
3 years ago
A piston-cylinder device contains 0.58 kg of steam at 300°C and 0.5 MPa. Steam is cooled at constant pressure until one-half of
Mumz [18]

Answer:

a) Tբ = 151.8°C

b) ΔV = - 0.194 m³

c) The T-V diagram is sketched in the image attached.

Explanation:

Using steam tables,

At the given pressure of 0.5 MPa, the saturation temperature is the final temperature.

Right from the steam tables (A-5) with a little interpolation, Tբ = 151.793°C

b) The volume change

Using data from A-5 and A-6 of the steam tables,

The volume change will be calculated from the mass (0.58 kg), the initial specific volume (αᵢ) and the final specific volume

(αբ) (which is calculated from the final quality and the consituents of the specific volumes).

ΔV = m(αբ - αᵢ)

αբ = αₗ + q(αₗᵥ) = αₗ + q (αᵥ - αₗ)

q = 0.5, αₗ = 0.00109 m³/kg, αᵥ = 0.3748 m³/kg

αբ = 0.00109 + 0.5(0.3748 - 0.00109)

αբ = 0.187945 m³/kg

αᵢ = 0.5226 m³/kg

ΔV = 0.58 (0.187945 - 0.5226) = - 0.194 m³

c) The T-V diagram is sketched in the image attached

3 0
3 years ago
Given: A graphite-moderated nuclear reactor. Heat is generated uniformly in uranium rods of 0.05m diameter at the rate of 7.5 x
sineoko [7]

Answer:

The maximum temperature at the center of the rod is found to be 517.24 °C

Explanation:

Assumptions:

1- Heat transfer is steady.

2- Heat transfer is in one dimension, due to axial symmetry.

3- Heat generation is uniform.

Now, we consider an inner imaginary cylinder of radius R inside the actual uranium rod of radius Ro. So, from steady state conditions, we know that, heat generated within the rod will be equal to the heat conducted at any point of the rod. So, from Fourier's Law, we write:

Heat Conduction Through Rod = Heat Generation

-kAdT/dr = qV

where,

k = thermal conductivity = 29.5 W/m.K

q = heat generation per unit volume = 7.5 x 10^7 W/m³

V = volume of rod = π r² l

A = area of rod = 2π r l

using these values, we get:

dT = - (q/2k)(r dr)

integrating from r = 0, where T(0) = To = Maximum center temperature, to r = Ro, where, T(Ro) = Ts = surface temperature = 120°C.

To -Ts = qr²/4k

To = Ts + qr²/4k

To = 120°C + (7.5 x 10^7 W/m³)(0.025 m)²/(4)(29.5 W/m.°C)

To = 120° C + 397.24° C

<u>To = 517.24° C</u>

5 0
3 years ago
Other questions:
  • Why should engineers avoid obvious patterns?
    13·2 answers
  • Small droplets of carbon tetrachloride at 68 °F are formed with a spray nozzle. If the average diameter of the droplets is 200 u
    10·1 answer
  • The statement that is NOT true about the concept of a boundary layer on an object is: a. the Reynolds number is greater than uni
    6·1 answer
  • What is the Principle of Entropy Increase?
    9·1 answer
  • An inventor claims to have developed a power cycle operating between hot and cold reservoirs at 1175 K and 295 K, respectively,
    9·1 answer
  • Air is to be heated steadily by an 8-kW electric resistance heater as it flows through an insulated duct. If the air enters at 5
    10·1 answer
  • What are the characteristic features of stress corrosion cracks?
    15·1 answer
  • Ayuda con este problema de empuje y principio de arquimedes.
    6·1 answer
  • The current flow in an NMOS transistor is due to one of the following:
    11·1 answer
  • Please help me with this, picture.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!