Answer:
<u><em>Pentane </em></u>
Explanation:
since we have in here CH3-CH2-CH2-CH2-CH3 5 Carbon atoms and 12 Hydrogen making it 
Explanation:
The Holy Roman Empire (Latin: Sacrum Imperium Romanum; German: Heiliges Römisches Reich), also termed as the First Reich, was a multi-ethnic complex of territories in Western and Central Europe that developed during the Early Middle Ages and continued until its dissolution in 1806 during the Napoleonic Wars.[6] The largest territory of the empire after 962 was the Kingdom of Germany, though it also included the neighboring Kingdom of Bohemia and Kingdom of Italy, plus numerous other territories, and soon after the Kingdom of Burgundy was added. However, while by the end of the 15th century the Empire was still in theory composed of three major blocks – Italy, Germany, and Burgundy – in practice only the Kingdom of Germany remained, with the Burgundian territories lost to France and the Italian territories, ignored in the Imperial Reform, although formally part of the Empire, were splintered into numerous de facto independent territorial entities.[7][8][9][10] The external borders of the Empire did not change noticeably from the Peace of Westphalia – which acknowledged the exclusion of Switzerland and the Northern Netherlands, and the French protectorate over Alsace – to the dissolution of the Empire. By then, it largely contained only German-speaking territories, plus the Kingdom of Bohemia, the southern Netherlands and lands of Carniola. At the conclusion of the Napoleonic Wars in 1815, most of the Holy Roman Empire was included in the German Confederation.
in yr language:
Ang Holy Roman Empire (Latin: Sacrum Imperium Romanum; German: Heiliges Römisches Reich), na tinawag din bilang First Reich, ay isang multi-etniko na kumplikado ng mga teritoryo sa Kanluran at Gitnang Europa na d
There are two scales, one is a Ritcher scale and another one is called a Mercalli scale.
State the order in which the ions associated with a compound composed of potassium and bromine would be written in the chemical formula and the compound name.
Answer:
67.6 years is the time the isotope take to decay from 0.900g to 0.170g
Explanation:
The radioactive decay follows first order law:
Ln [A] = -kt + ln[A]₀
<em>Where [A] is concentration after time t,</em>
<em>k is decay constant:</em>
<em>k = ln 2 / t(1/2)</em>
<em>k = ln2 / 28.1 years</em>
<em>k = 0.02467 years⁻¹</em>
<em>[A]₀ = Initial concentration.</em>
<em />
We can replace concentration and use the mass of the isotope:
Ln [A] = -kt + ln[A]₀
Ln [0.170g] = -0.02467 years⁻¹t + ln[0.900g]
-1.667 = -0.02467 years⁻¹t
t =
<h3>67.6 years is the time the isotope take to decay from 0.900g to 0.170g</h3>