Answer:
Explanation:
All three lighter boron trihalides, BX3 (X = F, Cl, Br), form stable adducts with common Lewis bases. Their relative Lewis acidities can be evaluated in terms of the relative exothermicities of the adduct-forming reaction. Such measurements have revealed the following sequence for the Lewis acidity: BF3 < BCl3 < BBr3 (in other words, BBr3 is the strongest Lewis acid).
This trend is commonly attributed to the degree of π-bonding in the planar boron trihalide that would be lost upon pyramidalization (the conversion of the trigonal planar geometry to a tetrahedral one) of the BX3 molecule, which follows this trend: BF3 > BCl3 > BBr3 (that is, BBr3 is the most easily pyramidalized). The criteria for evaluating the relative strength of π-bonding are not clear, however. One suggestion is that the F atom is small compared to the larger Cl and Br atoms, and the lone pair electron in the 2pzorbital of F is readily and easily donated, and overlaps with the empty 2pz orbital of boron. As a result, the [latex]\pi[/latex] donation of F is greater than that of Cl or Br. In an alternative explanation, the low Lewis acidity for BF3 is attributed to the relative weakness of the bond in the adducts F3B-L.
Answer:
heat increase, pressue loss, altitude gain,
Explanation:
Answer:
Option B. Decreasing the temperature of the solvent
Explanation:
Solubility is mostly enhanced by increasing the temperature of the solvent or solution. This means that am increase in temperature will increase the solubility and decreasing the temperature will decrease the solubility.
Answer: (C) Statements (i) and (iii)
Explanation: According to byjus.com, group VII elements are known as Halogens.
Not only that, but bbc.co.uk says " Atoms of group 7 elements all have seven electrons in their outer shell. This means that the halogens all have similar chemical reactions ."
It may just be (b) though as these are chemical reactions.
They look like gases plasmas have no fixed shapes or volume and are less dense tan solids or liquids