Answer:
markers are 29.76 m far apart in the laboratory
Explanation:
Given the data in the question;
speed of particle = 0.624c
lifetime = 159 ns = 1.59 × 10⁻⁷ s
we know that; c is speed of light which is equal to 3 × 10⁸ m/s
we know that
distance = vt
or s = ut
so we substitute
distance = 0.624c × 1.59 × 10⁻⁷ s
distance = 0.624(3 × 10⁸ m/s) × 1.59 × 10⁻⁷ s
distance = 1.872 × 10⁸ m/s × 1.59 × 10⁻⁷ s
distance = 29.76 m
Therefore, markers are 29.76 m far apart in the laboratory
Answer:
btw But I don't use Insta
Part a)
At t = 0 the position of the object is given as

At t = 2

so displacement of the object is given as

so average speed is given as

Part b)
instantaneous speed is given by


now at t= 0

at t = 1


at t = 2

Part c)
Average acceleration is given as



Part d)
Now for instantaneous acceleration
As we know that

at t = 0

at t = 1

now we have

At t = 2 we have



<em>so above is the instantaneous accelerations</em>
The answer of this question is 0.6m/s
A build up of charges on a sock from a dryer