The speed of light is 299,792,458 meters per second in vacuum.
It's somewhat slower in any material substance, and different in
each substance.
(That's 186,282.4 miles per second.)
<span>This would be the atomic mass. In an atom of carbon-12, there are 6 protons and 6 neutrons at rest (electrons have a negligible mass and are usually not part of the overall mass calculation). All atomic masses are based off the measurements of this specific iteration of carbon.</span>
Answer:
Explanation:
6. When insulating materials rub against each other, they may become electrically charged .
7. Charging by conduction involves the contact of a charged object to a neutral object.
8. Grounding is the process of removing the excess charge on an object by means of the transfer of electrons between it and another object of substantial size.
9. Grounding is the process of removing the excess charge on an object by means of the transfer of electrons between it and another object of substantial size.
Answer:
108.43 grams KNO₃
Explanation:
To solve this problem we use the formula:
Where
- ΔT is the temperature difference (14.5 K)
- Kf is the cryoscopic constant (1.86 K·m⁻¹)
- b is the molality of the solution (moles KNO₃ per kg of water)
- and<em> i</em> is the van't Hoff factor (2 for KNO₃)
We <u>solve for b</u>:
- 14.5 K = 1.86 K·m⁻¹ * b * 2
Using the given volume of water and its density (aprx. 1 g/mL) we <u>calculate the necessary moles of KNO₃</u>:
- 275 mL water ≅ 275 g water
- moles KNO₃ = molality * kg water = 3.90 * 0.275
- moles KNO₃ = 1.0725 moles KNO₃
Finally we <u>convert KNO₃ moles to grams</u>, using its molecular weight:
- 1.0725 moles KNO₃ * 101.103 g/mol = 108.43 grams KNO₃