1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tasya [4]
2 years ago
9

Under what conditions the reaction rate of an enzymolysis that follows Michaelis-Menten kinetics is a quarter of its maximum val

ue?
a. [S]=KM
b. [S]=KM/3
c. [S]=2KM
d. [S]=KM+3
e. [S]= (KM)^1/3
Physics
1 answer:
ExtremeBDS [4]2 years ago
3 0

Solution :

Michaelis-Menten kinetics in the field of biochemistry is considered as one of the well known models for enzyme kinetics. The model represents an equation that describes the enzymatic reactions's rate by relating the reaction rate to the substrate's concentration. The equation is named after the two famous scientists,  Leonor Michaelis and Maud Menten.

The formula is :

$v=\frac{V_{max}[S]}{K_M + [S]}$

where v = velocity of reaction

           $V_{max}$ = maximum rate achieved

           $K_M$ = Michaelis constant

           [S] = concentration of the substrate, S

According to the question, by putting the velocity of reaction, v as $\frac{V_{max}}{4}$, we get the above equation as

$[S]= \frac{K_M}{3}$

Therefore the answer is $[S]= \frac{K_M}{3}$

You might be interested in
Matter that organisms require for their life processes are
hram777 [196]

Answer:

nutrients

Explanation:

Nutrients are matter that organisms require for their life processes.

5 0
2 years ago
A solar cell generates a potential difference of 0.25 V when a 550 Ω resistor is connected across it, and a potential difference
Andre45 [30]

a) 400 \Omega

b) 0.43 V

c) 0.44 %

Explanation:

a)

For a battery with internal resistance, the relationship between emf of the battery and the terminal voltage (the voltage provided) is

V=E-Ir (1)

where

V is the terminal voltage

E is the emf of the battery

I is the current

r is the internal resistance

In this problem, we have two situations:

1) when R_1=550 \Omega, V_1=0.25 V

Using Ohm's Law, the current is:

I_1=\frac{V_1}{R_1}=\frac{0.25}{550}=4.5\cdot 10^{-4} A

2) when R_2=1000 \Omega, V_2=0.31 V

Using Ohm's Law, the current is:

I_2=\frac{V_2}{R_2}=\frac{0.31}{1000}=3.1\cdot 10^{-4} A

Now we can rewrite eq.(1) in two forms:

V_1 = E-I_1 r

V_2=E-I_2 r

And we can solve this system of equations to find r, the internal resistance. We do it by substracting eq.(2) from eq(1), we find:

V_1-V_2=r(I_2-I_1)\\r=\frac{V_1-V_2}{I_2-I_1}=\frac{0.25-0.31}{3.1\cdot 10^{-4}-4.5\cdot 10^{-4}}=400 \Omega

b)

To find the electromotive force (emf) of the solar cell, we simply use the equation used in part a)

V=E-Ir

where

V is the terminal voltage

E is the emf of the battery

I is the current

r is the internal resistance

Using the first set of data,

V=0.25 V is the voltage

I=4.5\cdot 10^{-4}A is the current

r=400\Omega is the internal resistance

Solving for E,

E=V+Ir=0.25+(4.5\cdot 10^{-4})(400)=0.43 V

c)

In this part, we are told that the area of the cell is

A=4.0 cm^2

While the intensity of incoming radiation (the energy received per unit area) is

Int.=5.5 mW/cm^2

This means that the power of the incoming radiation is:

P=Int.\cdot A=(5.5)(4.0)=22 mW = 0.022 W

This is the power in input to the resistor.

The power in output to the resistor can be found by using

P'=I^2R

where:

R=1000 \Omega is the resistance of the resistor

I=3.1\cdot 10^{-4} A is the current on the resistor (found in part A)

Susbtituting,

P'=(3.1\cdot 10^{-4})^2(1000)=9.61\cdot 10^{-5} W

Therefore, the efficiency of the cell in converting light energy to thermal energy is:

\epsilon = \frac{P'}{P}\cdot 100 = \frac{9.6\cdot 10^{-5}}{0.022}=0.0044\cdot 100 = 0.44\%

7 0
3 years ago
See the person on the right side of the front car. Six reference points could be used to show that the person is in / is NOT in
Rasek [7]

▪▪▪▪▪▪▪▪▪▪▪▪▪  {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪

1. According to person standing on ground ~

  • The person is in motion

2. According to The car ~

  • The person is not in motion

3. According to the Seat ~

  • The person is not in motion

4. According to another person on ride ~

  • The person is not in motion

5. According to the track ~

  • The person is in motion

6. According to the Sun ~

  • The person is in motion

I hope that's what you were looking for, goodluck for your assignment ~

7 0
2 years ago
When a comet comes close to the Sun, what happens to it that makes it bright and easier to see?
Eddi Din [679]

Answer:

Explanation:

Comet is made by dust particles, icy particles, gases etc.

A comet has a fixed time to complete a revolution around the sun.

As a comet comes nearer to the sun, due to the heat of the sun the vapour and the icy particles becomes gases and due to the radial pressure of energy od sun, we observe a tail of comet which has vapours mainly. SI the comet is visible easily.

7 0
3 years ago
Starting from rest, a 2-m-long pendulum swings from an angleof
Andrews [41]

Answer:

D.) 1m/s

Explanation:

Assume the initial angle of the swing is 12.8 degree with respect to the vertical. We can calculate the vertical distance from this initial point to the lowest point by first calculate the vertical distance from this point the the pivot point:

L_1 = L*cos(12.8) = 2*0.975 = 1.95 m

where L is the pendulum length

The vertical distance from the lowest point to the pivot point L_2 is the pendulum length 2m

this means the vertical distance from this initial point to the lowest point is simply:

L_3 = L_2 - L_1 = 2 - 1.95 = 0.05 m

As the pendulum travel (vertically) from the initial point to the bottom point, its potential energy is converted to kinetic energy:

E_p = E_k

mgh = mv^2/2

where m is the mass of the pendulum, g  = 10 m/s2 is the constant gravitational acceleration, h = 0.05 is the vertical it travels, v is the pendulum velocity at the bottom, which we are trying to solve for.

The m on both sides of the equation cancel out

v^2 = 2gh = 2*10*0.05 = 1

v = \sqrt{1} = 1 m/s

so D is the correct answer

5 0
3 years ago
Other questions:
  • Idaho Jo is doing physics experiments throughout the solar system. She travels to each planet and shoots a potato straight up in
    15·1 answer
  • Light is part of a collection of waves known as the what
    9·1 answer
  • A 20600 kg sailboat experiences an eastward force 17700 N due to the tide pushing its hullwhile the wind pushes the sails with a
    11·1 answer
  • A truck covers 40.0 m in 7.45 s while uniformly slowing down to a final velocity of 2.35 m/s.
    7·1 answer
  • If the net force on an object is zero then the object has
    8·1 answer
  • 3. Categorize each statement as true or false. True False as the fringe order increase for a diffraction grating the fringe brig
    8·1 answer
  • Which happens during the day at the beach?
    13·1 answer
  • A small car and an SUV are at a stoplight. The car has a mass equal to half that of the SUV, and the SUV's engine can produce a
    14·1 answer
  • Elizabeth has always believed that people's thoughts can help heal them. She wants to help people use positive thinking to posit
    9·1 answer
  • Entropy is how quickly things get messy.<br> O A. True<br> OB. False<br><br><br><br> Answer : False
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!