Answer:
B. Libra
Explanation:
Libra's range from September 23rd to October 22nd
<span>Here are some
pH < 7
Sour taste (though you should never use this characteristic to identify an acid in the lab)
Reacts with a metal to form hydrogen gas Increases the H+ concentration in water
Donates H+ ions<span>
Turns blue litmus indicator red</span></span>
Answer:
single replacement
Explanation:
Step 1: Data given
single replacement = A reaction in which one element replaces a similar element in a compound. For example, a metal replaces an other metal.
The general form of a single-replacement (also called single-displacement) reaction is:
A+BC→AC+B
Decomposition = a reaction in which a compound breaks down into two or more simpler substances. The general form of a decomposition reaction is:
AB→A+B
Synthesis = A reaction that occurs when one or more compounds combines to form a complex compound:
A + B → AB
Double replacement: a reaction in which the positive and negative ions of two ionic compounds exchange places to form two new compounds.
The general form of a double-replacement reaction is:
AB+CD→AD+BC
Combustion reaction = a reaction in which a substance reacts with oxygen gas, releasing energy in the form of light and heat. Combustion reactions must involve O2 as one reactant.
The reaction Zn + 2HCl → ZnCl2 + H2
⇒ Does not involve O2 = NOT a combustion reaction
⇒ The compounds do not form a complex compound = NOT a synthesis
⇒ A compound does not break down into smaller substances = NOT a decomposition
⇒ There is a replacement between Zn and H. This is a <u>single replacement</u>, not a double replacement reaction.
The number of moles in 3.612 x 10²⁴ molecules of CaO is 6 moles.
<h3>
Number of moles in the molecules</h3>
The number of moles in 3.612 x 10²⁴ molecules of CaO is calculated as follows;
6.02 x 10²³ molecules = 1 mole
3.612 x 10²⁴ molecules = ?
= (3.612 x 10²⁴ ) / (6.02 x 10²³ )
= 6 moles
Thus, the number of moles in 3.612 x 10²⁴ molecules of CaO is 6 moles.
Learn more about number of moles here: brainly.com/question/15356425
Answer: For 1 mole of a single atom it is equal to its molar mass. And a single atom, 1 mole is equal to the Avogadro's Number.
Explanation: The relationship can be expressed through the following:
1 mole = molar mass of an atom/ compound
1 atom x 1 mole / 6.022x10^23 atoms