Answer:
The pH of a solution is simply a measure of the concentration of hydrogen ions,
H
+
, which you'll often see referred to as hydronium cations,
H
3
O
+
.
More specifically, the pH of the solution is calculated using the negative log base
10
of the concentration of the hydronium cations.
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
pH
=
−
log
(
[
H
3
O
+
]
)
a
a
∣
∣
−−−−−−−−−−−−−−−−−−−−−−−−
Now, we use the negative log base
10
because the concentration of hydronium cations is usually significantly smaller than
1
.
As you know, every increase in the value of a log function corresponds to one order of magnitude.
Explanation:
Answer:
Biogenesis is the production of new living organisms. Conceptually, biogenesis sometimes attributed to Louis Pasteur and encompasses the belief that complex living things come only from other living things, by means of reproduction.
Explanation:
Answer:
maybe they don't want to answer it only if you give them a lot of points and brainliest they will answer it i think
Explanation:
The maximum mass of B₄C that can be formed from 2.00 moles of boron (III) oxide is 55.25 grams.
<h3>What is the stoichiometry?</h3>
Stoichiometry of the reaction gives idea about the relative amount of moles of reactants and products present in the given chemical reaction.
Given chemical reaction is:
2B₂O₃ + 7C → B₄C + 6CO
From the stoichiometry of the reaction, it is clear that:
2 moles of B₂O₃ = produces 1 mole of B₄C
Now mass of B₄C will be calculated by using the below equation:
W = (n)(M), where
- n = moles = 1 mole
- M = molar mass = 55.25 g/mole
W = (1)(55.25) = 55.25 g
Hence required mass of B₄C is 55.25 grams.
To know more about stoichiometry, visit the below link:
brainly.com/question/25829169
#SPJ1
Answer:
Normality N = 0.2 N
Explanation:
Normality is the number of gram of equivalent of solute divided of volume of solution, where the number of gram of equivalent of solute is weight of the solute divided by the equivalent weight.
Normality is represented by N.
Mathematically, we have :

Given that:
number of gram of equivalent of solute = 90 milliequivalents 90 × 10⁻³ equivalent
volume of solution (HCl) = 450 mL 450 × 10⁻³ L

Normality N = 0.2 N