The solution for this problem is: In the figure, you now know that total length of the kerosene column
So at x – xPatm + Pkg(H0 th) = Pa + Pwgh
Now H0 + h = 20 + 91.1 mm = 111.1 mm
Therefore = Pkg 0.1111 – P2g= h = 56 x 0.111 – 98 / 1000 x 9.81= 0.081 m or 81 mn
Therefore H0 = 111.1 - 81= 30.1 mm
Answer:
2.5 cm
40 D
Explanation:
When the radius of curvature of a lens is divided by 2 we get the focal length of the lens.
Focal length is given by

The focal length of the lens is 2.5 cm
When we divide 1 by the focal length in the unit of meters we get the power of a lens
Power of a lens is given by

The power of the lens is 40 D
Answer:
option b
Explanation:
because the law of conservation
it means that energy can never created nor be destroyed
even it will change into another form if energy