<u>Answer:</u>
<h3>As electric current is carried in a cable, around it, a magnetic field is created. The lines of the magnetic fields form concentric circles around the wire. The direction of the magnetic field hinges on the direction of the current. It can be calculated by pointing the thumb of your right hand in the direction of the moment, using the "right hand law." The position of your curled fingers is in the magnetic field lines. The magnetic field magnitude depends on the sum of current, and the distance from the wire carrying the charge.</h3>
<u></u>
<u>Explanation:</u>
Determine the direction of vector B magnitude B: 

Resultant magnitude strength:
its direction is pointing to the left.
Note: Refer the image attached below
I cant see the paragraph so i cant see. It srry
Answer:
Neither A or B
Explanation:
The 37.3mv is not the signal voltage
sensor ground circuit does not has excessive resistance.
No I don’t think so. But it worth a try tho. Try it out.
Answer:
0.54454
104.00902 N
Explanation:
m = Mass of wheel = 100 kg
r = Radius = 0.52 m
t = Time taken = 6 seconds
= Final angular velocity
= Initial angular velocity
= Angular acceleration
Mass of inertia is given by

Angular acceleration is given by

Equation of rotational motion

The coefficient of friction is 0.54454
At r = 0.25 m

The force needed to stop the wheel is 104.00902 N