1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lbvjy [14]
3 years ago
8

Let surface S be the boundary of the solid object enclosed by x^2+z^2=4, x+y=6, x=0, y=0, and z=0. and, let f(x,y,z)=(3x)i+(x+y+

2z)j + (3z)k be a vector field (for example, the velocityfaild of a fluid flow). the solid object has five sides, S1:bottom(xy-plane), S2:left side(xz-plane), S3 rear side(yz-plane), S4:right side, and S5:cylindrical roof.
a. Sketch the solid object.
b. Evaluate the flux of F through each side of the object (S1,S2,S3,S4,S5).
c. Find the total flux through surface S.
Physics
1 answer:
babunello [35]3 years ago
4 0

a. I've attached a plot of the surface. Each face is parameterized by

• \mathbf s_1(x,y)=x\,\mathbf i+y\,\mathbf j with 0\le x\le2 and 0\le y\le6-x;

• \mathbf s_2(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2;

• \mathbf s_3(y,z)=y\,\mathbf j+z\,\mathbf k with 0\le y\le 6 and 0\le z\le2;

• \mathbf s_4(u,v)=u\cos v\,\mathbf i+(6-u\cos v)\,\mathbf j+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2; and

• \mathbf s_5(u,y)=2\cos u\,\mathbf i+y\,\mathbf j+2\sin u\,\mathbf k with 0\le u\le\frac\pi2 and 0\le y\le6-2\cos u.

b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.

\mathbf n_1=\dfrac{\partial\mathbf s_1}{\partial y}\times\dfrac{\partial\mathbf s_1}{\partial x}=-\mathbf k

\mathbf n_2=\dfrac{\partial\mathbf s_2}{\partial u}\times\dfrac{\partial\mathbf s_2}{\partial v}=-u\,\mathbf j

\mathbf n_3=\dfrac{\partial\mathbf s_3}{\partial z}\times\dfrac{\partial\mathbf s_3}{\partial y}=-\mathbf i

\mathbf n_4=\dfrac{\partial\mathbf s_4}{\partial v}\times\dfrac{\partial\mathbf s_4}{\partial u}=u\,\mathbf i+u\,\mathbf j

\mathbf n_5=\dfrac{\partial\mathbf s_5}{\partial y}\times\dfrac{\partial\mathbf s_5}{\partial u}=2\cos u\,\mathbf i+2\sin u\,\mathbf k

Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.

\displaystyle\iint_{S_1}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{6-x}f(x,y,0)\cdot\mathbf n_1\,\mathrm dy\,\mathrm dx

=\displaystyle\int_0^2\int_0^{6-x}0\,\mathrm dy\,\mathrm dx=0

\displaystyle\iint_{S_2}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,0,u\sin v)\cdot\mathbf n_2\,\mathrm dv\,\mathrm du

\displaystyle=\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=-8

\displaystyle\iint_{S_3}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^6\mathbf f(0,y,z)\cdot\mathbf n_3\,\mathrm dy\,\mathrm dz

=\displaystyle\int_0^2\int_0^60\,\mathrm dy\,\mathrm dz=0

\displaystyle\iint_{S_4}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,6-u\cos v,u\sin v)\cdot\mathbf n_4\,\mathrm dv\,\mathrm du

=\displaystyle\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=\frac{40}3+6\pi

\displaystyle\iint_{S_5}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^{\frac\pi2}\int_0^{6-2\cos u}\mathbf f(2\cos u,y,2\sin u)\cdot\mathbf n_5\,\mathrm dy\,\mathrm du

=\displaystyle\int_0^{\frac\pi2}\int_0^{6-2\cos u}12\,\mathrm dy\,\mathrm du=36\pi-24

c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.

Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_R\mathrm{div}\mathbf f(x,y,z)\,\mathrm dV

where <em>R</em> is the interior of <em>S</em>. We have

\mathrm{div}\mathbf f(x,y,z)=\dfrac{\partial(3x)}{\partial x}+\dfrac{\partial(x+y+2z)}{\partial y}+\dfrac{\partial(3z)}{\partial z}=7

The integral is easily computed in cylindrical coordinates:

\begin{cases}x(r,t)=r\cos t\\y(r,t)=6-r\cos t\\z(r,t)=r\sin t\end{cases},0\le r\le 2,0\le t\le\dfrac\pi2

\displaystyle\int_0^2\int_0^{\frac\pi2}\int_0^{6-r\cos t}7r\,\mathrm dy\,\mathrm dt\,\mathrm dr=42\pi-\frac{56}3

as expected.

You might be interested in
For a relative frequency distribution, relative frequency is computed is computed as ____________.
Yuliya22 [10]

Answer:

For a relative frequency distribution, relative frequency is computed as the class frequency divided by the number of observations.

6 0
2 years ago
A 2.00-m long uniform beam has a mass of 4.00 kg. The beam rests on a fulcrum that is 1.20 m from its left end. In order for the
Shalnov [3]

Answer:

x ’= 1,735 m,  measured from the far left

Explanation:

For the system to be in equilibrium, the law of rotational equilibrium must be fulfilled.

Let's fix a reference system located at the point of rotation and that the anticlockwise rotations have been positive

             

They tell us that we have a mass (m1) on the left side and another mass (M2) on the right side,

the mass that is at the left end x = 1.2 m measured from the pivot point, the mass of the right side is at a distance x and the weight of the body that is located at the geometric center of the bar

           x_{cm} = 1.2 -1

          x_ {cm} = 0.2 m

          Σ τ = 0

          w₁ 1.2 + mg 0.2 - W₂ x = 0

          x = \frac{m_1 g\ 1.2 \ + m g \ 0.2}{M_2 g}

          x = \frac{m_1 \ 1.2 \ + m \ 0.2 }{M_2}

let's calculate

          x = \frac{2.9 \ 1.2 \ + 4 \ 0.2 }{8.00}2.9 1.2 + 4 0.2 / 8

           

          x = 0.535 m

measured from the pivot point

measured from the far left is

           x’= 1,2 + x

           x'=  1.2 + 0.535

           x ’= 1,735 m

8 0
3 years ago
A student at a window on the second floor of a dorm sees her physics professor walking on the sidewalk beside the building. she
klasskru [66]
Refer to the diagram shown below.

In order for the balloon to strike the professor's head, th balloon should drop by 18 - 1.7 = 16.3 m in the time at the professor takes to walk 1 m.
The time for the professor to walk 1 m is
t = (1 m)/(0.45 m/s) = 2.2222 s

The initial vertical velocity of the balloon is zero.
The vertical drop of the balloon in 2.2222 s is
h = (1/2)*(9.8 m/s²)*(2.2222 s)² = 24.197 m

Because 24.97 > 16.3, the balloon lands in front of the professor, and does not hit the professor.

The time for the balloon to hit the ground is
(1/2)*(9.8)*t² = 18
t = 1.9166 s

The time difference is 2.2222 - 1.9166 = 0.3056 s
Within this time interval, the professor travels 0.45*0.3056 = 0.175 m
Therefore the balloon falls 0.175 m in front of the professor.

Answer: 
The balloon misses the professor, and falls 0.175 m in front of the professor.

8 0
3 years ago
Which of the following CANNOT be
Nezavi [6.7K]

Answer:

Well, there is a kind of magnet to pick up a coin.. I think you can pick up a needle with one too.. I think safety pins. depending on what its made of though.

Explanation:

7 0
3 years ago
Read 2 more answers
An engine does 10 J of work and exhausts 25 J of waste heat during each cycle.
noname [10]
The thermal efficiency is defined as follows

\eta = 1 - \frac{Q_{\text{out}}}{Q_\text{in}},

and the energy which is put into the system is

Q_{\text{in}} = W_\text{out} + Q_\text{out}.

In your case Q_\text{in} = 25 \text{ J},W_\text{out}=10 \text{ J}.

So Q_\text{out}=10 \text{ J} which gives an efficiency of

\eta = 1 - \frac{10 \text{ J}}{25 \text { J}} = 0.6 = 60 \%.





4 0
3 years ago
Other questions:
  • True or false the magnetic poles of the earth move?
    14·1 answer
  • A car initially at rest accelerates at 10m/s^2. The car’s speed after it has traveled 25 meters is most nearly... A.) 0.0m/s B.)
    12·1 answer
  • Sunlight appears white. However, rainbows, sunburn and the ability to see colors tell a different story.Explain what each of the
    15·1 answer
  • 1. The speed limit on a particular freeway is 28.0 m/s (about 101 km/hour). A car
    10·1 answer
  • What are the basic properties of matter
    7·2 answers
  • A 1.5m wire carries a 2 A current when a potential difference of 55 V is applied. What is the resistance of the wire?
    9·1 answer
  • Which graph would you use to show the percentage of cookies sold by each
    13·1 answer
  • A girl stands 5m away from a large plane mirror. How far must she walk to be 2m away from her image?
    6·1 answer
  • According to the Law of Reflection, the angle of incidence the angle of reflection. O A. is greater than B. is less than C. equa
    9·1 answer
  • PLEASE ANSWER NEED HELP!!!!!!!! PLEASE THE CORRECT ANSWER!!!!!!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!