1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lbvjy [14]
3 years ago
8

Let surface S be the boundary of the solid object enclosed by x^2+z^2=4, x+y=6, x=0, y=0, and z=0. and, let f(x,y,z)=(3x)i+(x+y+

2z)j + (3z)k be a vector field (for example, the velocityfaild of a fluid flow). the solid object has five sides, S1:bottom(xy-plane), S2:left side(xz-plane), S3 rear side(yz-plane), S4:right side, and S5:cylindrical roof.
a. Sketch the solid object.
b. Evaluate the flux of F through each side of the object (S1,S2,S3,S4,S5).
c. Find the total flux through surface S.
Physics
1 answer:
babunello [35]3 years ago
4 0

a. I've attached a plot of the surface. Each face is parameterized by

• \mathbf s_1(x,y)=x\,\mathbf i+y\,\mathbf j with 0\le x\le2 and 0\le y\le6-x;

• \mathbf s_2(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2;

• \mathbf s_3(y,z)=y\,\mathbf j+z\,\mathbf k with 0\le y\le 6 and 0\le z\le2;

• \mathbf s_4(u,v)=u\cos v\,\mathbf i+(6-u\cos v)\,\mathbf j+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2; and

• \mathbf s_5(u,y)=2\cos u\,\mathbf i+y\,\mathbf j+2\sin u\,\mathbf k with 0\le u\le\frac\pi2 and 0\le y\le6-2\cos u.

b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.

\mathbf n_1=\dfrac{\partial\mathbf s_1}{\partial y}\times\dfrac{\partial\mathbf s_1}{\partial x}=-\mathbf k

\mathbf n_2=\dfrac{\partial\mathbf s_2}{\partial u}\times\dfrac{\partial\mathbf s_2}{\partial v}=-u\,\mathbf j

\mathbf n_3=\dfrac{\partial\mathbf s_3}{\partial z}\times\dfrac{\partial\mathbf s_3}{\partial y}=-\mathbf i

\mathbf n_4=\dfrac{\partial\mathbf s_4}{\partial v}\times\dfrac{\partial\mathbf s_4}{\partial u}=u\,\mathbf i+u\,\mathbf j

\mathbf n_5=\dfrac{\partial\mathbf s_5}{\partial y}\times\dfrac{\partial\mathbf s_5}{\partial u}=2\cos u\,\mathbf i+2\sin u\,\mathbf k

Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.

\displaystyle\iint_{S_1}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{6-x}f(x,y,0)\cdot\mathbf n_1\,\mathrm dy\,\mathrm dx

=\displaystyle\int_0^2\int_0^{6-x}0\,\mathrm dy\,\mathrm dx=0

\displaystyle\iint_{S_2}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,0,u\sin v)\cdot\mathbf n_2\,\mathrm dv\,\mathrm du

\displaystyle=\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=-8

\displaystyle\iint_{S_3}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^6\mathbf f(0,y,z)\cdot\mathbf n_3\,\mathrm dy\,\mathrm dz

=\displaystyle\int_0^2\int_0^60\,\mathrm dy\,\mathrm dz=0

\displaystyle\iint_{S_4}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,6-u\cos v,u\sin v)\cdot\mathbf n_4\,\mathrm dv\,\mathrm du

=\displaystyle\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=\frac{40}3+6\pi

\displaystyle\iint_{S_5}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^{\frac\pi2}\int_0^{6-2\cos u}\mathbf f(2\cos u,y,2\sin u)\cdot\mathbf n_5\,\mathrm dy\,\mathrm du

=\displaystyle\int_0^{\frac\pi2}\int_0^{6-2\cos u}12\,\mathrm dy\,\mathrm du=36\pi-24

c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.

Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_R\mathrm{div}\mathbf f(x,y,z)\,\mathrm dV

where <em>R</em> is the interior of <em>S</em>. We have

\mathrm{div}\mathbf f(x,y,z)=\dfrac{\partial(3x)}{\partial x}+\dfrac{\partial(x+y+2z)}{\partial y}+\dfrac{\partial(3z)}{\partial z}=7

The integral is easily computed in cylindrical coordinates:

\begin{cases}x(r,t)=r\cos t\\y(r,t)=6-r\cos t\\z(r,t)=r\sin t\end{cases},0\le r\le 2,0\le t\le\dfrac\pi2

\displaystyle\int_0^2\int_0^{\frac\pi2}\int_0^{6-r\cos t}7r\,\mathrm dy\,\mathrm dt\,\mathrm dr=42\pi-\frac{56}3

as expected.

You might be interested in
find the distance traveled in km when the average speed is 60 km per hour and the time taken is 3 and 1/2 hours​
Anna35 [415]

Answer:

210 km

Explanation:

60 x 3  1/2 = 210

3 0
3 years ago
How do the earth and the moon orbit the sun?
WARRIOR [948]

Earth pulls the moon towards it using gravitational pull/attraction, (because of the moons velocity it didn't crash into earth.)
5 0
3 years ago
Given that y is the vertical displacement of a wave at anytime and A is the amplitude of the wave, w is the angular speed of the
denis-greek [22]

Explanation:

The general equation describing a wave is:

y(x,t) = A sin(kx - wt)

Let's say that for a particular wave on a string the equation is:

y(x,t) = (0.9 cm) sin[(1.2 m-1)x - (5.0 s-1)t]

(a) Determine the wave's amplitude, wavelength, and frequency.

(b) Determine the speed of the wave.

(c) If the string has a mass/unit length of m = 0.012 kg/m, determine the tension in the string.

(d) Determine the direction of propagation of the wave.

(e) Determine the maximum transverse speed of the string.

Solutions

Part (a): The wave's amplitude, wavelength, and frequency can be determined from the equation of the wave:

y(x,t) = (0.9 cm) sin[(1.2 m-1)x - (5.0 s-1)t]

The amplitude is whatever is multiplying the sine.

A = 0.9 cm

The wavenumber k is whatever is multiplying the x:

k = 1.2 m-1The wavelength isl=2pk= 5.2 m

The angular frequency w is whatever is multiplying the t.

w = 5.0 rad/sf=w2p= 0.80 Hz

Part (b): The wave speed can be found from the frequency and wavelength:

v = f l = 0.80 * 5.2 = 4.17 m/s

Part (c): With m = 0.012 kg/m and the wave speed given by:v=(Tm)½

This gives a tension of T = m v2 = 0.012 (4.17)2 = 0.21 N.

Part (d): To find the direction of propogation of the wave, just look at the sign between the x and t terms in the equation. In our case we have a minus sign:

y(x,t) = (0.9 cm) sin[(1.2 m-1)x - (5.0 s-1)t]

A negative sign means the wave is traveling in the +x direction.

A positive sign means the wave is traveling in the -x direction.

Part (e): To determine the maximum transverse speed of the string, remember that all parts of the string are experiencing simple harmonic motion. We showed that in SHM the maximum speed is:

vmax = Aw

In this case we have A = 0.9 cm and w = 5.0 rad/s, so:

vmax = 0.9 * 5.0 = 4.5 cm/s

maybe this should help

6 0
3 years ago
One number is 9 more than twice another number. if the sum of the number is 129, find both numbers.
Paladinen [302]

Let's call the first number n, and the second number m.

n = 2m + 9 (9 more than twice the second number)

If the sum is 129, that means n + m = 129.

Now we can substitute the first expression (n = 2m + 9) into the second expression (n + m = 129), replacing the n.

(2m + 9) + m = 129

3m + 9 = 129

3m = 129 - 9

3m = 120

m = 120/3

m = 40

Now that we know m, we can find out n by replacing the m with 40 in the first expression (n = 2m + 9):

n = 2(40) + 9

n = 80 + 9

n = 89.


Therefore, n = 89, and m = 40.

5 0
3 years ago
A wave with a frequency of 5Hz travels a distance of 40mm in 2 seconds.What is the speed of the wave​
Sindrei [870]

Answer:

20mm per second

Explanation:

5 0
3 years ago
Other questions:
  • To increase power we need to?
    8·2 answers
  • If a baseball pitch leaves the pitcher's hand horizontally at a velocity of 150 km/h by what percent will the pull of gravity ch
    7·1 answer
  • A 5kg bag falls a verticle height of 10m before hitting the ground.
    5·1 answer
  • What property of sound enables us to distinguish one sound source from another?
    13·1 answer
  • What happens at the condensation point?
    13·2 answers
  • An object undergoing simple harmonic motion has amplitude of 2.3 m. if the maximum velocity of the object is 15 m/s, what is the
    11·2 answers
  • Explain the physics of carnival rides in terms of motion, forces, energy, and momentum
    6·1 answer
  • A physics student uses a spring loaded launcher to fire a 58 gram projectile horizontally. The projectile leaves the launcher at
    8·1 answer
  • What inflammatory molecule aids with muscle building and is released when muscles experience microscopic damage?
    5·1 answer
  • A body has a mass of 2kg.it accelerats from 20m/s to 40m/s in 4 seconds.the resultant force is<br>​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!