Answer:
B)−6,942 J
/mol
Explanation:
At constant temperature and pressure, you cand define the change in Gibbs free energy, ΔG, as:
ΔG = ΔH - TΔS
Where ΔH is enthalpy, T absolute temperature and ΔS change in entropy.
Replacing (25°C = 273 + 25 = 298K; 25.45kJ/mol = 25450J/mol):
ΔG = ΔH - TΔS
ΔG = 25450J/mol - 298K×108.7J/molK
ΔG = -6942.6J/mol
Right solution is:
<h3>B)−6,942 J
/mol</h3>
Explanation:
The enzyme 's active site binds to the substrate. Increasing the temperature generally increases the rate of a reaction, but dramatic changes in temperature and pH can denature an enzyme, thereby abolishing its action as a catalyst. ... When an enzyme binds its substrate it forms an enzyme-substrate complex.
- friend,please mark my answer in brainliest answers
- friend,please follow me
- friend,please thanks this answer
- friend,please vote it 5 star
Answer:Hola UwU
Most chemical reactions involve the breaking and formation of chemical bonds. It takes energy to break a chemical bond but energy is released when chemical bonds are formed. If more energy is released than consumed, then the chemical reaction evolves heat and is said to be exothermic.
Explanation:Adios~ UnU haha
Answer:
See explanation
Explanation:
The essence of chemical bonding is in order to attain minimum energy. The minimum energy state is the most stable state of a chemical system.
As the distance of separation between atoms decreases, the potential energy of the system decreases accordingly.
An optimum distance is reached when the two atoms attain the lowest potential energy. This is designated as the bond distance of the two atoms.
Hence two atoms have lower potential energy when bonded than when separated at large distance.
The rest of the bot needs to be able to heat up to cook ur food but the handles should be cooler so u can touch them