A spring is an object that can be deformed by a force and then return to its original shape after the force is removed.
Springs come in a huge variety of different forms, but the simple metal coil spring is probably the most familiar. Springs are an essential part of almost all moderately complex mechanical devices; from ball-point pens to racing car engines.
There is nothing particularly magical about the shape of a coil spring that makes it behave like a spring. The 'springiness', or more correctly, the elasticity is a fundamental property of the wire that the spring is made from. A long straight metal wire also has the ability to ‘spring back’ following a stretching or twisting action. Winding the wire into a spring just allows us to exploit the properties of a long piece of wire in a small space. This is much more convenient for building mechanical devices.
In the process of peppering the question with those forty (40 !) un-necessary quotation marks, you neglected to actually show us the illustration. So we have no information to describe the adjacent positions, and we're not able to come up with any answer to the question.
A natural force of attraction exerted by the earth upon objects, that pulls objects towards earth's center is called<u> </u><u>G</u><u>ravitational</u><u> </u><u>force</u><u> </u><u>.</u>
I’m not really sure but I think it’s D type 1 lever
Answer:
2633.7 s
Explanation:
From the question,
Heat lost by the water heater = Heat gained by the water
Applying,
P = cm(t₂-t₁)/t.................. Equation 1
Where P = power of the heat, c = specific heat capacity of water, m = mass of water, t₁ = initial temperature, t₂ = final temperature, t = time
make t the subject of the equation
t = cm(t₂-t₁)/P.............. Equation 2
From the question,
Given: c = 4190 J/kgK, P = 3.5 kW = 3500 W, m = 40 kg, t₁ = 20°C, t₂ = 75°C
Substitute these values into equation 2
t = 4190×40(75-20)/3500
t = 9218000/3500
t = 2633.7 s