1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nezavi [6.7K]
3 years ago
13

Under what conditions will the front of a glacier remain stationary?

Physics
1 answer:
goblinko [34]3 years ago
5 0
<span>When melting and snow accumulation are equal.</span>
You might be interested in
A research vessel is mapping the bottom of the ocean using sonar. It emits a short sound pulse called "ping" downward. The frequ
Elena L [17]

Answer:

The ocean is 6485.6m deep when measured from the vessel

Explanation:

v=1474m/s

t=8.88s

let d represent distance from the vessel to the ocean bottom.

an echo travels a distance equivalent to 2d, that is to and fro after it reflects from the obstacle.

velocity=\frac{distance}{time}\\ v=\frac{2d}{t} \\vt=2d\\d=\frac{vt}{2}

d=\frac{1474*8.8}{2}

d= 6485.6m

7 0
3 years ago
Two identical tiny spheres of mass m =2g and charge q hang from a non-conducting strings, each of length L = 10cm. At equilibriu
Citrus2011 [14]

Answer:

0.247 μC

Explanation:

As both sphere will be at the same level at wquilibrium, the direction of the electric force will be on the x axis. As you can see in the picture below, the x component of the tension of the string of any of the spheres should be equal to the electric force of repulsion. And its y component will be equal to the weight of one sphere. We can use trigonometry to find the components of the tensions:

F_y:  T_y - W = 0\\T_y = m*g = 0.002 kg *9.81m/s^2 = 0.01962 N

T_y = T_*cos(50)\\T = \frac{T_y}{cos(50)} = 0.0305 N

T_x = T*sin(50) = 0.0234 N

The electric force is given by the expression:

F = k*\frac{q_1*q_2}{r^2}

In equilibrium, the distance between the spheres will be equal to 2 times the length of the string times sin(50):

r = 2*L*sin(50) = 2 * 0.1m * sin(50) 0.1532 m

And k is the coulomb constan equal to 9 *10^9 N*m^2/C^2. q1 y q2 is the charge of each particle, in this case, they are equal.

F_x = T_x - F_e = 0\\T_x = F_e = k*\frac{q^2}{r^2}

q = \sqrt{T_x *\frac{r^2}{k}} = \sqrt{0.0234 N * \frac{(0.1532m)^2}{9*10^9 N*m^2/C^2} } = 2.4704 * 10^-7 C

O 0.247 μC

8 0
3 years ago
A horizontal 810-N merry-go-round of radius 1.60 m is started from rest by a constant horizontal force of 55 N applied tangentia
Sloan [31]

Answer:

576 joules

Explanation:

From the question we are given the following:

weight = 810 N

radius (r) = 1.6 m

horizontal force (F) = 55 N

time (t) = 4 s

acceleration due to gravity (g) = 9.8 m/s^{2}

K.E = 0.5 x MI x ω^{2}

where MI is the moment of inertia and ω is the angular velocity

MI = 0.5 x m x r^2

mass = weight ÷ g = 810 ÷ 9.8 = 82.65 kg

MI = 0.5 x 82.65 x 1.6^{2}

MI = 105.8 kg.m^{2}

angular velocity (ω) = a x t

angular acceleration (a) = torque ÷ MI

where torque = F x r = 55 x 1.6 = 88 N.m

a= 88 ÷ 105.8 = 0.83 rad /s^{2}

therefore

angular velocity (ω) = a x t = 0.83 x 4 = 3.33 rad/s

K.E = 0.5 x MI x ω^{2}

K.E = 0.5 x 105.8 x 3.33^{2} = 576 joules

6 0
3 years ago
An automobile having a mass of 1,000 kg is driven into a brick wall in a safety test. The bumper behaves like a spring with cons
vlada-n [284]

Answer:

v=2.02\frac{m}{s}

Explanation:

Assuming no energy lost, according to the law of conservation of energy, the kinetic energy of the automobile becomes potential energy after the crash:

K=U\\\frac{mv^2}{2}=\frac{kx^2}{2}

Here m is the automobile's mass, v is the speed of the car before impact, k is the "bumper" constant and x is the compression of the bumper due to the collision. Solving for v:

v=x\sqrt\frac{k}{m}\\v=2.63*10^{-2}m\sqrt{\frac{5.9*10^6\frac{N}{m}}{10^3kg}}\\v=2.02\frac{m}{s}

8 0
3 years ago
The 1.18-kg uniform slender bar rotates freely about a horizontal axis through O. The system is released from rest when it is in
sattari [20]

Answer:

 k = 11,564 N / m,   w = 6.06 rad / s

Explanation:

In this exercise we have a horizontal bar and a vertical spring not stretched, the bar is released, which due to the force of gravity begins to descend, in the position of Tea = 46º it is in equilibrium;

 let's apply the equilibrium condition at this point

                 

Axis y

          W_{y} - Fr = 0

          Fr = k y

let's use trigonometry for the weight, we assume that the angle is measured with respect to the horizontal

             sin 46 = W_{y} / W

             W_{y} = W sin 46

     

 we substitute

           mg sin 46 = k y

           k = mg / y sin 46

If the length of the bar is L

          sin 46 = y / L

           y = L sin46

 

we substitute

           k = mg / L sin 46 sin 46

           k = mg / L

for an explicit calculation the length of the bar must be known, for example L = 1 m

           k = 1.18 9.8 / 1

           k = 11,564 N / m

With this value we look for the angular velocity for the point tea = 30º

let's use the conservation of mechanical energy

starting point, higher

          Em₀ = U = mgy

end point. Point at 30º

         Em_{f} = K -Ke = ½ I w² - ½ k y²

          em₀ = Em_{f}

          mgy = ½ I w² - ½ k y²

          w = √ (mgy + ½ ky²) 2 / I

the height by 30º

           sin 30 = y / L

           y = L sin 30

           y = 0.5 m

the moment of inertia of a bar that rotates at one end is

          I = ⅓ mL 2

          I = ½ 1.18 12

          I = 0.3933 kg m²

let's calculate

          w = Ra (1.18 9.8 0.5 + ½ 11,564 0.5 2) 2 / 0.3933)

          w = 6.06 rad / s

7 0
3 years ago
Other questions:
  • Which pair of sentences is describing the same velocity? A car is parked. A car is moving in circles. A bus drives 40 miles per
    9·2 answers
  • A humanoid skeleton is found buried in the ashes of a volcano that erupted between 10,000 and 12,000 years ago. when scientists
    6·2 answers
  • During light activity, a 70-kg person may generate 200 kcal
    11·1 answer
  • Julia and her musician friends were competing in the school talent show. Julia wanted her band to win the "most talented" award,
    8·2 answers
  • What is the density of concrete in kilogram per cubic meter.
    13·2 answers
  • What is the longest bone in your body
    14·2 answers
  • A 0.0780 kg lemming runs off a
    15·1 answer
  • A scientist performs an experiment and asks other scientists around the
    5·1 answer
  • A 10,000 W motor operates an elevator weighing 5000 N. Assuming no frictional losses, how high is the elevator raised in 10 seco
    5·1 answer
  • More facts about mental health
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!