Answer:
the magnitude of the force that the wire will experience = 1.8 N
Explanation:
The force on a current carrying wire placed in a magnetic field is :
F = Idl × B
where:
I = current flowing through the wire
dl = length of the wire
B = magnetic field
We can equally say that :

where : sin θ is the angle at which the orientation from the magnetic field to the wire occurs = 30°
Then;

Given that:
L = 20 cm = 0.2 m
I = 6 A
B = 3 T
θ = 30°
Then:
F = 3 × 6 × 0.2 sin 30°
F = 1.8 N
Therefore, the magnitude of the force that the wire will experience = 1.8 N
Answer:
B) 2.7 g of aluminium has a volume of 1 cm^3
Explanation:
Density can be defined as mass all over the volume of an object.
Simply stated, density is mass per unit volume of an object.
Mathematically, density is given by the equation;

If the density of aluminum is 2.7 g/cm³, it simply means that 2.7 g of aluminium has a volume of 1 cm³
Check:
Given the following data;
Mass = 2.7 grams
Volume = 1 cm³
Substituting into the formula, we have;

Density = 2.7 g/cm³
Answer:
1.5 m
Explanation:
H = actual height of the superhero = ?
H₀ = height of the superhero as observed = 1.73 m
v = speed of the superhero = 0.50 c
Using the equation

Inserting the values

H = 1.5 m
Answer:
spring compressed is 0.724 m
Explanation:
given data
mass = 1.80 kg
spring constant k = 2 × 10² N/m
initial height = 2.25 m
solution
we know from conservation of energy is
mg(h+x) = 0.5 × k × x² ...................1
here x is compression in spring
so put here value in equation 1 we get
1.8 × 9.8 × (2.25+x) = 0.5 × 2× 10² × x²
solve it we get
x = 0.724344
so spring compressed is 0.724 m
Please state the options and I will answer to the best of my abilities XD