1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RSB [31]
3 years ago
10

A car of mass 500kg travelling at 60m/s has it speed reduced to 40m/s by a constant breaking force over a distance of 200m. find

car initial kinetic energy. the final kinetic energy​
Physics
1 answer:
uranmaximum [27]3 years ago
6 0

Answer:

Ek1 = 900000 [J]

Ek1 = 400000 [J]

Explanation:

In order to solve this problem we must remember that kinetic energy is defined as the product of mass by velocity squared by a medium. Therefore using the following equation we have:

E_{k1}=\frac{1}{2}*m*v1^{2}

where:

m = mass = 500 [kg]

v1 = 60 [m/s]

So we have:

Ek1 = 0.5*500*(60^2)

Ek1 = 900000 [J]

and:

Ek2 = 0.5*500*(40^2)

Ek2 = 400000 [J]

You might be interested in
A pendulum is set in motion and time. The time measured for 20 complete swings is 308.
laiz [17]

Answer:

<em><u>solution</u></em>

<em>3</em><em>0</em><em>8</em><em>=</em><em>2</em><em>0</em><em> </em><em>swings</em><em> </em>

<em> </em><em>?</em><em>:</em><em>:</em><em>:</em><em> </em><em>=</em><em>1</em>

<em>(</em><em> </em><em>3</em><em>0</em><em>8</em><em>×</em><em>1</em><em>)</em><em>÷</em><em>2</em><em>0</em>

<em>3</em><em>0</em><em>8</em><em>÷</em><em>2</em><em>0</em>

<em>1</em><em>5</em><em>4</em><em>÷</em><em>1</em><em>0</em>

<em>=</em><em>1</em><em>5</em><em>.</em><em>4</em>

<em>=</em>15.4

6 0
3 years ago
1) A uniform wooden beam, with mass of 120 and length L = 4 m, is supported as illustrated in the figure. If the static friction
Kobotan [32]

Answer:

1(a) 55.0°

1(b) 58.3°

2(a) 10.2 N

2(b) 2.61 m/s²

3(a) 76.7°

3(b) 12.8 m/s

3(c) 3.41 s

3(d) 21.8 m/s

3(e) 18.5 m

4(a) 7.35 m/s²

4(b) 31.3 m/s²

4(c) 12.8 m/s²

Explanation:

1) Draw a free body diagram on the beam.  There are five forces:

Weight force mg pulling down at the center of the beam,

Normal force Na pushing up at point A,

Friction force Na μa pushing left at point A,

Normal force Nb pushing perpendicular to the incline at point B,

Friction force Nb μb pushing up the incline at point B.

There are 3 unknown variables: Na, Nb, and θ.  So we're going to need 3 equations.

Sum of forces in the x direction:

∑F = ma

-Na μa + Nb sin φ − Nb μb cos φ = 0

Nb (sin φ − μb cos φ) = Na μa

Nb / Na = μa / (sin φ − μb cos φ)

Sum of forces in the y direction:

∑F = ma

Na + Nb cos φ + Nb μb sin φ − mg = 0

Na = mg − Nb (cos φ + μb sin φ)

Sum of torques about point B:

∑τ = Iα

-mg (L/2) cos θ + Na L cos θ − Na μa L sin θ = 0

mg (L/2) cos θ = Na L cos θ − Na μa L sin θ

mg cos θ = 2 Na cos θ − 2 Na μa sin θ

mg = 2 Na − 2 Na μa tan θ

Substitute:

Na = 2 Na − 2 Na μa tan θ − Nb (cos φ + μb sin φ)

0 = Na − 2 Na μa tan θ − Nb (cos φ + μb sin φ)

Na (1 − 2 μa tan θ) = Nb (cos φ + μb sin φ)

1 − 2 μa tan θ = (Nb / Na) (cos φ + μb sin φ)

2 μa tan θ = 1 − (Nb / Na) (cos φ + μb sin φ)

Substitute again:

2 μa tan θ = 1 − [μa / (sin φ − μb cos φ)] (cos φ + μb sin φ)

tan θ = 1/(2 μa) − (cos φ + μb sin φ) / (2 sin φ − 2 μb cos φ)

a) If φ = 70°, then θ = 55.0°.

b) If φ = 90°, then θ = 58.3°.

2) Draw a free body diagram of each mass.  For each mass, there are four forces.  For mass A:

Weight force Ma g pulling down,

Normal force Na pushing perpendicular to the incline,

Friction force Na μa pushing parallel down the incline,

Tension force T pulling parallel up the incline.

For mass B:

Weight force Mb g pulling down,

Normal force Nb pushing perpendicular to the incline,

Friction force Nb μb pushing parallel up the incline,

Tension force T pulling up the incline.

There are four unknown variables: Na, Nb, T, and a.  So we'll need four equations.

Sum of forces on A in the perpendicular direction:

∑F = ma

Na − Ma g cos θ = 0

Na = Ma g cos θ

Sum of forces on A up the incline:

∑F = ma

T − Na μa − Ma g sin θ = Ma a

T − Ma g cos θ μa − Ma g sin θ = Ma a

Sum of forces on B in the perpendicular direction:

∑F = ma

Nb − Mb g cos φ = 0

Nb = Mb g cos φ

Sum of forces on B down the incline:

∑F = ma

-T − Nb μb + Mb g sin φ = Mb a

-T − Mb g cos φ μb + Mb g sin φ = Mb a

Add together to eliminate T:

-Ma g cos θ μa − Ma g sin θ − Mb g cos φ μb + Mb g sin φ = Ma a + Mb a

g (-Ma (cos θ μa + sin θ) − Mb (cos φ μb − sin φ)) = (Ma + Mb) a

a = -g (Ma (cos θ μa + sin θ) + Mb (cos φ μb − sin φ)) / (Ma + Mb)

a = 2.61 m/s²

Plug into either equation to find T.

T = 10.2 N

3i) Given:

Δx = 3.7 m

vᵧ = 0 m/s

aₓ = 0 m/s²

aᵧ = -10 m/s²

t = 1.25 s

Find: v₀ₓ, v₀ᵧ

Δx = v₀ₓ t + ½ aₓ t²

3.7 m = v₀ₓ (1.25 s) + ½ (0 m/s²) (1.25 s)²

v₀ₓ = 2.96 m/s

vᵧ = aᵧt + v₀ᵧ

0 m/s = (-10 m/s²) (1.25 s) + v₀ᵧ

v₀ᵧ = 12.5 m/s

a) tan θ = v₀ᵧ / v₀ₓ

θ = 76.7°

b) v₀² = v₀ₓ² + v₀ᵧ²

v₀ = 12.8 m/s

3ii) Given:

Δx = D cos 57°

Δy = -D sin 57°

v₀ₓ = 2.96 m/s

v₀ᵧ = 12.5 m/s

aₓ = 0 m/s²

aᵧ = -10 m/s²

c) Find t

Δx = v₀ₓ t + ½ aₓ t²

D cos 57° = (2.96 m/s) t + ½ (0 m/s²) t²

D cos 57° = 2.96t

Δy = v₀ᵧ t + ½ aᵧ t²

-D sin 57° = (12.5 m/s) t + ½ (-10 m/s²) t²

-D sin 57° = 12.5t − 5t²

Divide:

-tan 57° = (12.5t − 5t²) / 2.96t

-4.558t = 12.5t − 5t²

0 = 17.058t  − 5t²

t = 3.41 s

d) Find v

vₓ = aₓt + v₀ₓ

vₓ = (0 m/s²) (3.41 s) + 2.96 m/s

vₓ = 2.96 m/s

vᵧ = aᵧt + v₀ᵧ

vᵧ = (-10 m/s²) (3.41 s) + 12.5 m/s

vᵧ = -21.6 m/s

v² = vₓ² + vᵧ²

v = 21.8 m/s

e) Find D.

D cos 57° = 2.96t

D = 18.5 m

4) Given:

R = 90 m

d = 140 m

v₀ = 0 m/s

at = 0.7t m/s²

The distance to the opposite side of the curve is:

140 m + (90 m) (π/2) = 281 m

a) Find Δx and v if t = 10.5 s.

at = 0.7t

Integrate:

vt = 0.35t² + v₀

vt = 0.35 (10.5)²

vt = 38.6 m/s

Integrate again:

Δx = 0.1167 t³ + v₀ t + x₀

Δx = 0.1167 (10.5)³

Δx = 135 m

The car has not yet reached the curve, so the acceleration is purely tangential.

at = 0.7 (10.5)

at = 7.35 m/s²

b) Find Δx and v if t = 12.2 s.

at = 0.7t

Integrate:

vt = 0.35t² + v₀

vt = 0.35 (12.2)²

vt = 52.1 m/s

Integrate again:

Δx = 0.1167 t³ + v₀ t + x₀

Δx = 0.1167 (12.2)³

Δx = 212 m

The car is in the curve, so it has both tangential and centripetal accelerations.

at = 0.7 (12.2)

at = 8.54 m/s²

ac = v² / r

ac = (52.1 m/s)² / (90 m)

ac = 30.2 m/s²

a² = at² + ac²

a = 31.3 m/s²

c) Given:

Δx = 187 m

v₀ = 0 m/s

at = 3 m/s²

Find: v

v² = v₀² + 2aΔx

v² = (0 m/s)² + 2 (3 m/s²) (187 m)

v = 33.5 m/s

ac = v² / r

ac = (33.5 m/s)² / 90 m

ac = 12.5 m/s²

a² = at² + ac²

a = 12.8 m/s²

5 0
3 years ago
Interacting with others while exercising is beneficial to social health because it allows a person to __________.
vlada-n [284]
Feel better and develop communication skills

It's not only the physical well-being that has developed as well as intellectual and emotional aspect of an individual. When having conversation to someone and you are doing something  it's also the same of having a multitask work. That all senses response quickly and something is developing in you, at same time you are establishing good rapport towards others.

Download doc
6 0
3 years ago
Summarize ocean acidification in one sentence.
Snowcat [4.5K]

Answer:

The ocean absorbs a significant portion of carbon dioxide (CO2) emissions from human activities, equivalent to about one-third of the total emissions for the past 200 years from fossil fuel combustion, cement production and land-use change (Sabine et al., 2004). Uptake of CO2 by the ocean benefits society by moderating the rate of climate change but also causes unprecedented changes to ocean chemistry, decreasing the pH of the water and leading to a suite of chemical changes collectively known as ocean acidification. Like climate change, ocean acidification is a growing global problem that will intensify with continued CO2 emissions and has the potential to change marine ecosystems and affect benefits to society.

The average pH of ocean surface waters has decreased by about 0.1 unit—from about 8.2 to 8.1—since the beginning of the industrial revolution, with model projections showing an additional 0.2-0.3 drop by the end of the century, even under optimistic scenarios (Caldeira and Wickett, 2005).1 Perhaps more important is that the rate of this change exceeds any known change in ocean chemistry for at least 800,000 years (Ridgewell and Zeebe, 2005). The major changes in ocean chemistry caused by increasing atmospheric CO2 are well understood and can be precisely calculated, despite some uncertainty resulting from biological feedback processes. However, the direct biological effects of ocean acidification are less certain

image

1 “Acidification” does not mean that the ocean has a pH below neutrality. The average pH of the ocean is still basic (8.1), but because the pH is decreasing, it is described as undergoing acidification.

Page 2

Suggested Citation:"Summary." National Research Council. 2010. Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean. Washington, DC: The National Academies Press. doi: 10.17226/12904. ×

Save

Cancel

and will vary among organisms, with some coping well and others not at all. The long-term consequences of ocean acidification for marine biota are unknown, but changes in many ecosystems and the services they provide to society appear likely based on current understanding (Raven et al., 2005).

In response to these concerns, Congress requested that the National Research Council conduct a study on ocean acidification in the Magnuson-Stevens Fishery Conservation and Management Reauthorization Act of 2006. The Committee on the Development of an Integrated Science Strategy for Ocean Acidification Monitoring, Research, and Impacts Assessment is charged with reviewing the current state of knowledge and identifying key gaps in information to help federal agencies develop a program to improve understanding and address the consequences of ocean acidification (see Box S.1 for full statement of task). Shortly after the study was underway, Congress passed another law—the Federal Ocean Acidification Research and Monitoring (FOARAM) Act of 2009—which calls for, among other things, the establishment of a federal ocean acidification program; this report is directed to the ongoing strategic planning process for such a program.

Although ocean acidification research is in its infancy, there is already growing evidence of changes in ocean chemistry and ensuing biological impacts. Time-series measurements and other field data have documented the decrease in ocean pH and other related changes in seawater chemistry (Dore et al., 2009). The absorption of anthropogenic CO2 by the oceans increases the concentration of hydrogen ions in seawater (quanti-

Explanation:

3 0
3 years ago
A car starts from rest and travels 25 m in 5 seconds at constant velocity. It then reverses 5 m in 10 seconds at constant veloci
natali 33 [55]

Answer:

the car is going to same sped !

Explanation:

I just now luv

8 0
3 years ago
Other questions:
  • What happens to the kinetic energy of a snowball as it rolls across the lawn and gains mass.
    6·2 answers
  • Which of the following is not part of a circuit? <br>film <br>Load<br> Key <br>Cell
    6·1 answer
  • Which of the following actions is best understood using Einstein's concepts rather than Newtonian physics?
    10·2 answers
  • Although we have discussed single-slit diffraction only for a slit, a similar result holds when light bends around a straight, t
    12·1 answer
  • A helium atom has a mass of mHe= 4.002604 u. When disassembled into its constituent subatomic particles (2 protons, 2 neutrons,
    14·1 answer
  • Consider an electron within the 1s orbital of a hydrogen atom. the normalized probability of finding the electron within a spher
    7·2 answers
  • PLEASE ANSWER ASAP: Find the angle that will allow the defender to tackle the ball carrier most efficiently. Also tell how far f
    15·1 answer
  • It is 25 miles from your house to a friend's house. Which unit conversion
    9·1 answer
  • 3.
    8·1 answer
  • How much kinetic energy does a moving object have if it’s mass is 100 kg and it is moving at a speed of 5 meters per second
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!