Answer:
Option A is the correct answer.
Explanation:
Here momentum is conserved.
That is 
Substituting values

Speed of block A after collision = 10 m/s
Option A is the correct answer.
Answer:
a) 1.06*10^-5
b) 0.00105 °C^-1
Explanation:
Given that
Length of the cylinder, L = 1.5 m
Radius of the cylinder, r = 0.25 cm
Voltage across the rod, V = 15 V
I• at Temperature T• = 20° C is 18.5 A
I at Temperature T = 90° C is 17.2 A
See attachment for calculations
Answer:
-30 N/C
Explanation:
Since the potential changes from 0.90 V to 1.2 V when I move the probe 1 cm closer to the non-grounded electrode, the electric field is the gradient between the two points is given by E = -ΔV/Δx where ΔV = change in electric potential and Δx = distance of potential change = 1 cm = 0.01 m
Now ΔV = final potential - initial potential = 1.2 V - 0.90 V = 0.30 V
Since E = -ΔV/Δx
substituting the values of the variables into the equation, we have
E = -ΔV/Δx
E = -0.30 V/0.01 m
E = -30 V/m
Since 1 V/m = 1 N/C.
E = -30 N/C
So, the average electric field is -30 N/C
Answer:
Maximum height of rocket = 2538.74 m
Explanation:
We have equation of motion s = ut + 0.5 at²
For first 5 seconds
s = 0 x 5 + 0.5 x 40 x 5² = 500 m
Now let us find out time after 5 seconds rocket move upward.
We have the equation of motion v = u + at
After 5 seconds velocity of rocket
v = 0 + 40 x 5 = 200 m/s
After 5 seconds the velocity reduces 9.8m/s per second due to gravity.
Time of flying after 5 seconds

Distance traveled in this 20.38 s
s = 200 x 20.38 - 0.5 x 9.81 x 20.38² = 2038.74 m
Maximum height of rocket = 500 +2038.74 = 2538.74 m