Answer:
A. The time taken for the car to stop is 3.14 secs
B. The initial velocity is 81.64 ft/s
Explanation:
Data obtained from the question include:
Acceleration (a) = 26ft/s2
Distance (s) = 256ft
Final velocity (V) = 0
Time (t) =?
Initial velocity (U) =?
A. Determination of the time taken for the car to stop.
Let us obtain an express for time (t)
Acceleration (a) = Velocity (V)/time(t)
a = V/t
Velocity (V) = distance (s) /time (t)
V = s/t
a = s/t^2
Cross multiply
a x t^2 = s
Divide both side by a
t^2 = s/a
Take the square root of both side
t = √(s/a)
Now we can obtain the time as follow
Acceleration (a) = 26ft/s2
Distance (s) = 256ft
Time (t) =..?
t = √(s/a)
t = √(256/26)
t = 3.14 secs
Therefore, the time taken for the car to stop is 3.14 secs
B. Determination of the initial speed of the car.
V = U + at
Final velocity (V) = 0
Deceleration (a) = –26ft/s2
Time (t) = 3.14 sec
Initial velocity (U) =.?
0 = U – 26x3.14
0 = U – 81.64
Collect like terms
U = 81.64 ft/s
Therefore, the initial velocity is 81.64 ft/s
Answer:
oone side at a time would be hot and the other oone
Explanation:
One side will be hot and the other cold no in-between
2nd and only 2nd option is right
To solve this problem we will apply the principle of conservation of energy. For this purpose, potential energy is equivalent to kinetic energy, and this clearly depends on the position of the body. In turn, we also note that the height traveled is twice that of the rigid rod, therefore applying these concepts we will have





Therefore the minimum speed at the bottom is required to make the ball go over the top of the circle is 4.67m/s