22. a - (vf^2 - vi^2)/(2d)
a = (0 - 23^2)/(170)
a = -3.1 m/s^2
23. Find the time (t) to reach 33 m/s at 3 m/s^2
33-0/t = 3
33 = 3t
t = 11 sec to reach 33 m/s^2
Find the av velocuty: 33+0/2 = 16.5 m/s
Dist = 16.5 * 11 = 181.5 meters to each 33m/s speed. Runway has to be at least this long.
24. The sprinter starts from rest. The average acceleration is found from:
(Vf)^2 = (Vi)^2 = 2as ---> a = (Vf)^2 - (Vi)^2/2s = (11.5m/s)^2-0/2(15.0m) = 4.408m/s^2 estimated: 4.41m/s^2
The elapsed time is found by solving
Vf = Vi + at ----> t = vf-vi/a = 11.5m/s-0/4.408m/s^2 = 2.61s
25. Acceleration of car = v-u/t = 0ms^-1-21.0ms^-1/6.00s = -3.50ms^-2
S = v^2 - u^2/2a = (0ms^-1)^2-(21.0ms^-1)^2/2*-3.50ms^-2 = 63.0m
26. Assuming a constant deceleration of 7.00 m/s^2
final velocity, v = 0m/s
acceleration, a = -7.00m/s^2
displacement, s - 92m
Using v^2 = u^2 - 2as
0^2 - u^2 + 2 (-7.00) (92)
initial velocity, u = sqrt (1288) = 35.9 m/s
This is the speed pf the car just bore braking.
I hope this helps!!
Answer:
It involves observation
It involves experimentation
It is supported by evidence
Explanation:
Science can be described as a system of knowledge based on the understanding of the natural world. The subject of science requires the scientific method - a chronological series of steps that have to be followed while trying to understand events in the natural world. These steps are:
- <em>observation</em>
- <em>formulation of hypothesis</em>
- <em>testing of the hypothesis by experimentation</em>
- <em>conclusion based on available evidence from the experiment</em>
Hence, science involves <u>observation</u>, <u>experimentation</u>, and <u>it is supported by evidence</u>.
A waterwheel is an example of Tidal energy
Explanation:
Track and Field is a sport, which is includes disciplines of running, jumping, and throwing events. The sport traces back to Ancient Greece. The first recorded examples of this sport were at the Ancient Greek Olympics. In Ancient Greece, only one event was contested, the stadion footrace. Later on, the game expanded to more events.Events of track and field are divided into three: track events, field events, and combined events. Track events consist of Sprints, middle-distance, long distance, hurdles and relays; Field events consist of jumps and throws; while combined events consist of pentathlon, heptathlon, and decathlon. Track and field is usually played outdoors in stadiums. The usual features of a track and field stadium are the outer running track, and the field within the track