Explanation:
it is the one you have selected because it is the only solid one
not sure.. you should eat poptarts
The answer to this question is C: the ability to memorize
Hope this helps :)
When 3.66 g of KOH (∆Hsol = -57.6 kJ/mol) is dissolved in 150.0 mL of solution, it causes a temperature change of 5.87 °C.
The enthalpy of solution of KOH is -57.6 kJ/mol. We can calculate the heat released by the solution (Qr) of 3.66 g of KOH considering that the molar mass of KOH is 56.11 g/mol.

According to the law of conservation of energy, the sum of the heat released by the solution of KOH (Qr) and the heat absorbed by the solution (Qa) is zero.

150.0 mL of solution with a density of 1.02 g/mL were prepared. The mass (m) of the solution is:

Given the specific heat capacity of the solution (c) is 4.184 J/g・°C, we can calculate the change in the temperature (ΔT) of the solution using the following expression.

When 3.66 g of KOH (∆Hsol = -57.6 kJ/mol) is dissolved in 150.0 mL of solution, it causes a temperature change of 5.87 °C.
Learn more: brainly.com/question/4400908
Answer:
Reactants, Activation energy, Energy released by the reaction and Products
Explanation:
This energy profile is that of an exothermic reaction. In an exothermic reaction, heat is liberated to the surrounding. The surrounding becomes hotter than the environment.
The first box to the left is the reactants which signifies the species combining together.
The topmost box is the activation energy which is the energy barrier that must be over come before a reaction takes place.
The box underneath is the energy change. Here, energy is being released.
The right most box is the product of the reaction.