Answer:
Applications of zeroth law of thermodynamics:
1. When we get very hot food, we wait to make it normal. In this case, hot food exchanges heat with surrounding and brings equilibrium.
2. We keep things in the fridge and those things come equilibrium with fridge temperature.
3. Temperature measurement with a thermometer or another device.
4. In the HVAC system, sensors or thermostats are used to indicate temperature. It always comes in a thermal equilibrium with room temperature.
5. If you and the swimming pool you’re in are at the same temperature, no heat is flowing from you to it or from it to you (although the possibility is there). You’re in thermal equilibrium.
Answer:32 m/s/s
Explanation: since F=M*A, F=16N, M=0.5kg, A= F/M
A=16/0.5
A=32 m/s/s
F = G*((m sub 1*m sub 2)/r^2)
<span>2.5 m/s going upward.
In the situation described, Erica and Danny undergo a non-elastic collision which will conserve their combined momentum. Since Erica is stationary, her momentum is 0. And since Danny is moving upward at 4.7 m/s his momentum is 43 kg * 4.7 m/s = 202.1 kg*m/s. Assuming that both Erica and Danny will be moving as a joined system, their combined mass is 38 kg + 43 kg = 81 kg. Since the momentum will be the same, their velocity will be 202.1 kg*m/s / 81 kg = 2.495061728 m/s. Since we only have 2 significant figures in the provided data, rounding the result to 2 significant figures gives a velocity of 2.5 m/s going upward.</span>
Answer:
distance = 3 + 4 = 7 mi
displacement is √(3² + 4²) = 5 mi
Explanation: