Answer:
The answer is a 4.2m
Explanation:
Given data
Please see attached the rough drawing for your reference.
From the drawing, you ran 18m west and 2.4m south
The displacement is
= 1.8+2.4
=4.2m
Answer:
The pitching speed of the ball is 19.7 m/s
Explanation:
- Here, we can use the third equation of motion,

- whereas v represents the final velocity, u represents initial velocity, a is the acceleration due to gravity and s is the displacement or distance an object traveled
- Here, the initial velocity of the the ball is given as zero and the acceleration due to gravity is 9.8 , the distance 's' is given as 20 m
- Using the equation,

- Hence, the pitching speed of the ball is 19.7 m/s
Answer:
The energy stored in the spring would be 1 joule.
Explanation:
hope that helps?
Answer:
The best option is for the following option m = 15 [g] and V = 5 [cm³]
Explanation:
We have that the density of a body is defined as the ratio of mass to volume.

where:
Ro = density = 3 [g/cm³]
Now we must determine the densities with each of the given values.
<u>For m = 7 [g] and V = 2.3 [cm³]</u>
![Ro=7/2.3\\Ro=3.04 [g/cm^{3} ]](https://tex.z-dn.net/?f=Ro%3D7%2F2.3%5C%5CRo%3D3.04%20%5Bg%2Fcm%5E%7B3%7D%20%5D)
<u>For m = 10 [g] and V = 7 [cm³]</u>
<u />
<u />
<u>For m = 15 [g] and V = 5 [cm³]</u>
<u />
<u />
<u>For m = 21 [g] and V = 8 [cm³]</u>
<u />
<u />
here we will use the momentum conservation
initial total momentum = final total momentum


now plug in all data here



so the final speed will be 7.94 m/s