Answer:
The mass of a system does not change during a chemical reaction
Explanation:
Correct Answers
Propylethylene would be the answer
The organic product formed when 1−hexyne is treated with H₂O, H₂SO₄, and HgSO₄ will be 2-hexanone (structure attached).
This reaction is an example of an oxymercuration reaction of the organic product 1−hexyne.
Oxymercuration is shown in three steps to the right. The nucleophilic double bond attacks the mercury ion, releasing an acetoxy group. The mercury ion's electron pair attacks carbon on the double bond, generating a positive-charged mercuronium ion. Mercury's dxz and 6s orbitals give electrons to the double bond's lowest unoccupied molecular orbitals.
In the second stage, the nucleophilic H₂O attacks the highly modified carbon, freeing its mercury-bonding electrons. Electrons neutralize mercury ions by collapsing. Water molecules have positive-charged oxygen.
In the third stage, the negatively charged acetoxy ion released in the first step attacks the hydrogen of the water group, generating the waste product HOAc. The two electrons in the oxygen-hydrogen link collapse into oxygen, neutralizing its charge and forming alcohol.
You can also learn about organic products from the following question:
brainly.com/question/13513481
#SPJ4
The chemical reaction would be as follows:
<span>2Na + S → Na2S
We are given the amount of the reactants to be used in the reaction. We use these to calculate the amount of product. We do as follows:
45.3 g Na ( 1 mol / 22.99 g ) = 1.97 mol Na
105 g S ( 1 mol / 32.06 g ) = 3.28 mol S
The limiting reactant would be Na. We calculate as follows:
1.97 mol Na ( 1 mol Na2S / 2 mol Na ) (78.04 g / mol ) = 76.87 g Na2S produced</span>
Salts is the correct awnser