Answer:
If you speak Any English i Think I will be able to help you Los Amigo
Explanation:
<h3>
Answer:</h3>
0.89 J/g°C
<h3>
Explanation:</h3>
Concept tested: Quantity of heat
We are given;
- Mass of the aluminium sample is 120 g
- Quantity of heat absorbed by aluminium sample is 9612 g
- Change in temperature, ΔT = 115°C - 25°C
= 90°C
We are required to calculate the specific heat capacity;
- We need to know that the quantity of heat absorbed is calculated by the product of mass, specific heat capacity and change in temperature.
That is;
Q = m × c × ΔT
- Therefore, rearranging the formula we can calculate the specific heat capacity of Aluminium.
Specific heat capacity, c = Q ÷ mΔT
= 9612 J ÷ (120 g × 90°C)
= 0.89 J/g°C
Therefore, the specific heat capacity of Aluminium is 0.89 J/g°C
The molar volume, symbol Vm<span>, is the </span>volume occupied by one mole of a substance at a given temperature and pressure. <span>It is equal to the </span>molar<span> mass divided by the mass density. Therefore, we calculate as follows:
Vm(CO2) = 44.01 / 1.56 = 28.21 cm^3 / mol
</span>Vm(NH3) = 17.03 / 0.84 = 20.27 cm^3 / mol