Answer: KE = 62.5J
Explanation:
Given that
Mass of object = 5kg
kinetic energy KE = ?
velocity of object = 5m/s
Since kinetic energy is the energy possessed by a moving object, and it depends on the mass (m) of the object and the velocity (v) by which it moves. Therefore, the object has kinetic energy.
i.e K.E = 1/2mv^2
KE = 1/2 x 5kg x (5m/s)^2
KE = 0.5 x 5 x 25
KE = 62.5J
Thus, the object has 62.5 joules of kinetic energy.
Sure I can be your friend do you play video games
Answer:
b) directional
Explanation:
The prediction that alcohol slows reaction time is Directional . This is because for alcohol to be known as one which slows reaction time means there have been various hypothesis conducted which supports this.
In this case, formulation of a null hypothesis is usually necessary which means that alcohol does not slow reaction time and another alternative hypothesis that suggests that alcohol slows reaction time.
Answer:
F = 789 Newton
Explanation:
Given that,
Speed of the car, v = 10 m/s
Radius of circular path, r = 30 m
Mass of the passenger, m = 60 kg
To find :
The normal force exerted by the seat of the car when the it is at the bottom of the depression.
Solution,
Normal force acting on the car at the bottom of the depression is the sum of centripetal force and its weight.



N = 788.6 Newton
N = 789 Newton
So, the normal force exerted by the seat of the car is 789 Newton.
Answer:
Explanation:
distance travelled
s = 2πR
= 2 X 3.14 X 140
= 880 m
final velocity = v
initial velocity = u
distance travelled = s
time = 60 s
s = ut + 1/2 at²
880 = .5 x a x 60²
a = .244 m/s²
final velocity v = at
= .244 x 60
= 14.66
centripetal acceleration at final moment
v² /R
14.66 X 14.66 / 140
= 1.53 m/s⁻²
1.53 m/s²
this is centripetal acceleration which acts towards the centre.
tangential acceleration calculated a _t = .244
redial acceleration ( centripetal ) = 1.53
Resultant acceleration
R²= 1.53² + .244 ²
R = 1.55 m/s²
total force = 1.55 x 76
= 118 N