Answer:
Water vapor
Explanation:
The magma consist of dissolved gases when these gases produce the force the volcanic eruption take place. The volcanic gases comes out and their volume is increased tremendously. The gases present in volcano are listed below:
The volcanic gases consist of water vapors, carbon dioxide and sulfur.
These three re the primary gases but the water is present in higher amount.
The percentage of water is 60%.
The carbon dioxide present in 10-40%.
Other gases present in valcano are nitrogen, argon, helium, neon methane and hydrogen.
The reaction N2O4 (g) <--> 2NO2 (g) is endothermic, meaning that it consumes heat to move towards formation of the products.
According to Le Chatelier's Principle, therefore, if heat is added, more product (NO2) will be produced, and equilibrium would shift towards the right side. This is choice 3.
Answer:
A) = 4.7 × 10⁻⁴atm
Explanation:
Given that,
Kp = 1.5*10³ at 400°C
partial pressure pN2 = 0.10 atm
partial pressure pH2 = 0.15 atm
To determine:
Partial pressure pNH3 at equilibrium
The decomposition reaction is:-
2NH3(g) ↔N2(g) + 3H2(g)
Kp = [pH2]³[pN2]/[pNH3]²
pNH3 =√ [(pH2)³(pN2)/Kp]
pNH3 = √(0.15)³(0.10)/1.5*10³ = 4.74*10⁻⁴ atm
![K_p = \frac{[pH_2] ^3[pN_2]}{[pNH_3]^2} \\pNH_3 = \sqrt{\frac{(pH_2)^3(pN_2)}{pNH_3} } \\pNH_3 = \sqrt{\frac{(0.15)^3(0.10)}{1.5 \times 10^3} } \\=4.74 \times 10^-^4atm](https://tex.z-dn.net/?f=K_p%20%3D%20%5Cfrac%7B%5BpH_2%5D%20%5E3%5BpN_2%5D%7D%7B%5BpNH_3%5D%5E2%7D%20%5C%5CpNH_3%20%3D%20%5Csqrt%7B%5Cfrac%7B%28pH_2%29%5E3%28pN_2%29%7D%7BpNH_3%7D%20%7D%20%5C%5CpNH_3%20%3D%20%5Csqrt%7B%5Cfrac%7B%280.15%29%5E3%280.10%29%7D%7B1.5%20%5Ctimes%2010%5E3%7D%20%7D%20%5C%5C%3D4.74%20%5Ctimes%2010%5E-%5E4atm)
= 4.7 × 10⁻⁴atm