Answer:
v=5.86 m/s
Explanation:
Given that,
Length of the string, l = 0.8 m
Maximum tension tolerated by the string, F = 15 N
Mass of the ball, m = 0.35 kg
We need to find the maximum speed the ball can have at the top of the circle. The ball is moving under the action of the centripetal force. The length of the string will be the radius of the circular path. The centripetal force is given by the relation as follows :

v is the maximum speed

Hence, the maximum speed of the ball is 5.86 m/s.
Answer:
For a relative frequency distribution, relative frequency is computed as the class frequency divided by the number of observations.
consider the motion of the tennis ball in downward direction
Y = vertical displacement = 400 m
a = acceleration = acceleration due to gravity = 9.8 m/s²
v₀ = initial velocity of the ball at the top of building = 10 m/s
v = final velocity of the ball when it hits the ground = ?
using the kinematics equation
v² = v²₀ + 2 a Y
inserting the values
v² = 10² + 2 (9.8) (400)
v = 89.11 m/s
Answer:
1) t=1.743 sec
2)Vo=61.388 m/sec
3)the x component of its velocity just be- fore it strikes the ground is the same as the initial velocity of the ball that is=61.388 m/sec
4)Vf=17.08 m/s
Explanation:
1)From second equation of motion we get
h=Vit+(1/2)gt^2
here in case(a): Vi=0 m/s,h=14.9m,,put these values in above equation to find the time the ball is in motion
14.9=(0)*t+(1/2)(9.8)t^2
t^2=14.9/4.9
t^2=3.040 sec
t=1.743 sec
2) s=Vo*t
Putting values we get
107=Vo*1.743
Vo=61.388 m/sec
3)the x component of its velocity just be- fore it strikes the ground is the same as the initial velocity of the ball that is=61.388 m/sec
4)From third equation of motion we know that
Vf^2-Vi^2=2gh
here Vi=0 m/s,h=14.9 m
Vf^2=Vi^2+2gh=0+2(9.8)(14.9)
Vf^2=292.04
Vf=17.08 m/s