Answer:
A. They are malleable, ductile, and conduct electricity.
Explanation:
Now that we have a background in the Lewis electron dot structure we can use it to locate the the valence electrons of the center atom. The valence-shell electron-pair repulsion (VSEPR) theory states that electron pairs repel each other whether or not they are in bond pairs or in lone pairs. Thus, electron pairs will spread themselves as far from each other as possible to minimize repulsion. VSEPR focuses not only on electron pairs, but it also focus on electron groups as a whole. An electron group can be an electron pair, a lone pair, a single unpaired electron, a double bond or a triple bond on the center atom. Using the VSEPR theory, the electron bond pairs and lone pairs on the center atom will help us predict the shape of a molecule.
The shape of a molecule is determined by the location of the nuclei and its electrons. The electrons and the nuclei settle into positions that minimize repulsion and maximize attraction. Thus, the molecule's shape reflects its equilibrium state in which it has the lowest possible energy in the system. Although VSEPR theory predicts the distribution of the electrons, we have to take in consideration of the actual determinant of the molecular shape. We separate this into two categories, the electron-group geometry and the molecular geometry.
a is the answer because all of the other answers are wrtong
As per Le Chatelier's principle, if the equilibrium of a system is disturbed by changes in temperature, pressure, concentration etc then it will shift in a direction to undo the effect of the induced change.
The given reaction is:
CO + 3H2 ↔ CH4 + H2O
In this case, if the rate of the forward reaction is increased then more of the reactants get converted into products i.e. concentration of reactants decreases. In order to undo this change, the equilibrium will shift in a direction to produce more reactants i.e. to the left.
Ans: B) faster rate of forward reaction
Explanation:
Synthetic fiber or synthetic fibre (in British English; see spelling differences) are fibers made by humans through chemical synthesis, as opposed to natural fibers that are directly derived from living organisms. They are the result of extensive research by scientists to improve upon naturally occurring animal and plant fibers. In general, synthetic fibers are created by extruding fiber-forming materials through spinnerets, forming a fiber. These are called synthetic or artificial fibers. Synthetic fibers are created by a process known as polymerization, which involves combining monomers to make a long chain or polymer. The word polymer comes from a Greek prefix "poly" which means "many" and suffix "mer" which means "single units". (Note: each single unit of a polymer is called a monomer). There are two types of polymerization: linear polymerization and cross-linked polymerization.