Answer:
Half life = 79.67 sec
Explanation:
Given that:
k = 
The expression for half life is shown below as:-
Where, k is rate constant
So,
Half life = 79.67 sec
Hey there,
I hope this answer solves your doubt.
<u>S</u><u>t</u><u>e</u><u>p</u><u>-</u><u>b</u><u>y</u><u>-</u><u>s</u><u>t</u><u>e</u><u>p</u><u> </u><u>Expla</u><u>n</u><u>a</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u>
The question is asking if the bonds between Carbon and Chlorine in CCl4 will be single, double or triple bonds.
<em>(</em><em>The structure of CCl4 </em><em>i</em><em>s attached as picture. Check it</em><em>)</em>
As per image, the structure consists of <u>Singl</u><u>e</u><u> </u><u>b</u><u>o</u><u>n</u><u>d</u><u>s</u><u>.</u> It is <u>4 single bonds</u>.
Answer:35 electrons
Bromine atoms have 35 electrons and the shell structure is 2.8. 18.7. The ground state electron configuration of ground state gaseous neutral bromine is [Ar
Explanation:
<span>CO2 (carbon) is the main product that results from burning paper. The paper is the reactant
When paper burns in a fire, the reactants are mostly carbon (the main substance in the paper) and oxygen (from the air).Co2
If paper is loaded with CaCO3 such as cigarette paper, CaCO3 decompose in to CaO and CO2</span>
Answer:
Molar mass = 12.51 g/mol
Explanation:
V = 3L
P = 1.25 atm
T = 20 C = 20 + 273 = 293 K (Upon conversion to kelvin temperature)
n =?
m = 1.95g
Molar mass = ?
The variables are related by the follwing equation;
pV = nRT
where r = gas constant = 0.0821 L atm K−1
Solving for n, we have;
n = pV / RT
n = (1.25 * 3 ) / (0.0821 * 293)
n = 3.75 / 24.0553 = 0.1559 mol
The relationship between number of moles, n and molar mass is given as;
n = mass / molar mass
Molar mass = Mass / n = 1.95 / 0.1559
Molar mass = 12.51 g/mol