Atoms of the same element with different mass numbers are called isotopes
Answer:
To calculate an electron configuration, divide the periodic table into sections to represent the atomic orbitals, the regions where electrons are contained. Groups one and two are the s-block, three through 12 represent the d-block, 13 to 18 are the p-block and the two rows at the bottom are the f-block.Explanation:
Molar mass :
Li₂S = <span>45.947 g/mol
AlCl</span>₃ = <span>133.34 g/mol
</span><span>3 Li</span>₂<span>S + 2 AlCl</span>₃<span> = 6 LiCl + Al</span>₂S₃
3 * 45.947 g Li₂S ----------> 2 * <span>133.34 g AlCl</span>₃
1.084 g Li₂S ----------------> ?
Mass Li₂S = 1.084 * 2 * 133.34 / 3 * 45.947
Mass Li₂S = 289.08112 / 137.841
Mass Li₂S = 2.0972 g
hope this helps!
Answer:
Cr (HSO4)3
Explanation:
its molecular weight is 343.20 g/mol
its molecular formula can also be written as CrH3O12S3
molar mass of Cr (HSO4)3 can be calculated by following method;
atomic mass of Cr = 51.9961 u
atomic mass of H = 1 u
atomic mass of S = 32.065 u
atomic mass of O = 16 u
molar mass of Cr(HSO4)3 = 51.9961+ 1.00784×3 + 32.065×3 + 15.999×12
molar mass of Cr(HSO4)3 =51.9961+3.02352+96.195+ 191.988
molar mass of Cr(HSO4)3 = 343.20 g/mol
The mass of plutonium that will remain after 1000 years if the initial amount is 5 g when the half life of plutonium-239 (239pu, pu-239) is 24,100 years is 2.5 g
The equation is Mr=Mi(1/2)^n
where n is the number of half-lives
Mr is the mass remaining after n half lives
Mi is the initial mass of the sample
To find n, the number of half-lives, divide the total time 1000 by the time of the half-life(24,100)
n=1000/24100=0.0414
So Mr=5x(1/2)^1=2.5 g
The mass remaining is 2.5 g
- The half life is the time in which the concentration of a substance decreases to half of the initial value.
Learn more about half life at:
brainly.com/question/24710827
#SPJ4