Answer:
Everything in Earth's system can be placed into one of four major subsystems: land, water, living things, or air. These four subsystems are called "spheres." Specifically, they are the "lithosphere" (land), "hydrosphere" (water), "biosphere" (living things), and "atmosphere" (air).
Explanation:
Answer:
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
Explanation:
Step 1: Given data
The supercritical CO2 has a density of 0.469 g/cm³ (or 0.469 g/mL)
The sample hasa volume of 25.0 mL
Step 2: Calculating mass of the sample
The density is the mass per amount of volume
0.469g/cm³ = 0.469g/ml
The mass for a sample of 25.0 mL = 0.469g/mL * 25.0 mL = 11.725g ≈ 11.7g
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
The answer is 163.333993748 grams
Answer:
Would you consider adding a sodium carbonate solution to a magnesium sulfate .
Explanation:
??
It follows that the reaction is spontaneous at high temperatures Option A.
<h3>What is ΔS ?</h3>
The term ΔS is referred to as the change in the entropy of the system. Now recall that entropy is defined as the degree of disorderliness in a system. If a system is highly disorderly then it means that it has a high entropy. Also, ΔH has to do with the heat change that accompanies a reaction.
We know that both the entropy and the heat change can both either be positive or negative. Now we know that the equation ΔG = ΔH - TΔS can be used to ascertain whether or not a reaction will be spontaneous. If the result is negative, then the reaction will be spontaneous.
As such, when then it follows that the reaction is spontaneous at high temperatures Option A.
Learn more about spontaneous reaction:brainly.com/question/13790391
#SPJ1