I am pretty sure it is B....
Answer:
F = 2π I R B
Explanation:
The magnetic force is described by the equation.
F = q v x B = i L x B
Where i is the current, L is a vector that points in the direction of the current (length) and B is the magnetic field.
This equation can be used in scalar form and the direction of the force found by the right hand ruler, the thumb goes in the direction of L, the fingers extended in the direction of B and the palm of the hand indicates the direction of the force if the load is positive
F = i L B sin θ
In this case the wire is in the xy plane and the z-axis field whereby they are perpendicular, θ = 90º and sin 90 = 1
F = i L B
The loop length is
L = 2π R
F = i 2π R B
F = 2π I R B
The force is in the loop
Answer:
Explanation:
During a car collision momentum of vehicle ceases within a fraction of seconds so Force due to the impulse is huge.
Impulse is defined as the product of average force and time. If we can increase the period of collision for the same impulse then the average force imparted will be less.
If we can increase the time period then damage due to collision will be less.
A) the universe is expanding
Every galaxy is moving away from each other - not just us. And the further they are away, the faster they are moving
Answer:
Mass of the disk will be 2.976 kg
Explanation:
We have given force F = 45 N
Radius of the disk r = 0.12 m
Angular acceleration 
We know that torque 
And 
So
, here I is moment of inertia
So 

We know that moment of inertia 
So 
m = 2.976 kg