Explanation:
30 minutes is 1800 seconds.
Power = energy / time
P = 1100 J / 1800 s
P = 0.611 W
Converting the energy from J to kWh:
1100 J × (1 Ws / 1 J) × (1 kW / 1000 W) × (1 h / 3600 s) = 3.06×10⁻⁴ kWh
To find resistance, you need to be given either the voltage or the current.
Yes! Fossils, The outlines of the continents and geological features .
Answer:
The work done by the gravel to stop the truck is 520.44 kJ
Explanation:
<u>Step 1</u>: Data given
Mass of the truck = 3047.8 kg
The ramp has an angle of 9.5 °
Velocity of the truck = 20.68 m/s
distance = 26.6 meters
<u>Step 2:</u> Calculate initial kinetic energy
sin 9.5° = 0.165
h = ℓ*sin 9.5° = 26.6*0.165= 4.39 m
Ek = 1/2m*Vo² = 1/2*3047.8*20.68² = 651714.7 Joule = 651.7 kJ = initial kinetic energy
<u>Step 3: </u>Calculate potential energy
Epot = U = m*g*h = 3047.8*9.81*4.39 = 131256.25 Joule = 131.26 kJ
<u>Step 4:</u> What work is done by the truck on the gravel?
Frictional energy Ef = 651.7 kJ - 131.26 kJ = 520.44 kJ
Answer: I think Its the Height is 11.76 Meters (38.582677 Feet) between the bridge and the ground
Explanation: Supposing that where not counting air resistance in the equation, the equation
states that 1/2 multiplied by earths gravitational acceleration multiplied by the amount of time to reach the bottom: 2.4 seconds equals 11.76 meters of height between the bridge and the ground.
Heat required to change the phase of ice is given by
Q = m* L
here
m = mass of ice
L = latent heat of fusion
now we have
m = 45 kg
L = 334 KJ/kg
now by using above formula


In KJ we can convert this as

so the correct answer is D option