Gold or copper than silver
Answer:
The minimum coefficient of friction required is 0.35.
Explanation:
The minimum coefficient of friction required to keep the crate from sliding can be found as follows:


Where:
μ: is the coefficient of friction
m: is the mass of the crate
g: is the gravity
a: is the acceleration of the truck
The acceleration of the truck can be found by using the following equation:


Where:
d: is the distance traveled = 46.1 m
: is the final speed of the truck = 0 (it stops)
: is the initial speed of the truck = 17.9 m/s
If we take the reference system on the crate, the force will be positive since the crate will feel the movement in the positive direction.

Therefore, the minimum coefficient of friction required is 0.35.
I hope it helps you!
initial speed of 226000 m/s
acceleration of 4.0 x 1014 m/s2,
speed of 781000 m/s
What is Acceleration?
- Acceleration is a rate of change of velocity with respect to time with respect to direction and speed.
- A point or an object moving in a straight line is accelerated if it speeds up or slows down.
- Acceleration formula can be written as,
a = (v - u ) / t m/s²
As we have to find the time taken, the formula can be altered as,

where, t - time taken to reach a final speed
v - final velocity
u - initial velocity
a - acceleration.
Substituting all the given values,

= 1.3875 × 10⁻⁹ seconds.
So, taken to reach the final speed is found to be 1.3 × 10⁻⁹ 8iH..
Answer:
(iv), (v), (vi) would be incorrect.
Explanation:
(iv) Force isn't transferred from one colliding object to another, but momentum can be.
(v) An object doesn't stop immediately a force stops acting on it. Think of a thrown ball.
(vi) For an object not to move, it means that the net force on the object is zero, and not necessarily that there are no forces acting on the object. For example, an object could be pushed on one side, and be pushed on the other side with an equal force in the opposite direction. The forces would cancel each other and the net force would be zero.
The rest should be correct.
A) We balance the masses: 4(1.00728) vs 4.0015 + 2(0.00055)4.02912 vs. 4.0026This shows a "reduced mass" of 4.02912 - 4.0026 = 0.02652 amu. This is also equivalent to 0.02652/6.02E23 = 4.41E-26 g = 4.41E-29 kg.
b) Using E = mc^2, where c is the speed of light, multiplying 4.41E-29 kg by (3E8 m/s)^2 gives 3.96E-12 J of energy.
c) Since in the original equation, there is only 1 helium atom, we multiply the energy result in b) by 9.21E19 to get 3.65E8 J of energy, or 365 MJ of energy.