Answer:
83.69 gm
Explanation:
molar weight of N2 = 28
Find the number of moles then multiply by this
1.8 x10^24/ (6.022x10^23) * 28 =83.69 gm
Answer:
Is their a picture with the question?
Explanation:
Answer:
The ΔHrxn for the above equation = 179 kJ/mol
Explanation:
The reaction bond enthalpies are for the reactant;
3 × N-H = 3 × 390 = 1,170 kJ/mol
2 × O=O = 2 × 502 = 1004 kJ/mol
The reaction bond enthalpies are for the product;
3 × N-O = 3 × 201 = 603 kJ/mol
3 × O-H = 3 × 464 = 1,392 kJ/mol
The ΔHrxn for the above equation is therefore;
ΔHrxn = 1,170 + 1,004 - (603 + 1,392) = 179 kJ/mol
They're only found in the nucleus and play an important role in keeping the atom stable because they carry a negative charge to counteract the proton's positive charge.