Answer: the molarity of the solution in volumetric flask "B' is 0.0100 M
Explanation:
Given that;
the Molarity of stock solution M₁ = 1.25M
The molarity os solution in volumetric flask A (M₂) = M₂
Volume of stock solution pipet out (V₁) = 5.00mL
Volume of solution in volumetric flask A V₂ = 25.00mL
using the dilution formula
M₁V₁ = M₂V₂
M₂ = M₁V₁ / V₂
WE SUBSTITUTE
M₂ = ( 1.25 × 5.00 ) / 25.00 mL
M₂ = 0.25 M
Now volume of solution pipet out from volumetric flask A V₂ = 2.00 mL
Molarity of solution in volumetric flask B (M₃) = M₃
Volume of solution in volumetric flask B V₃ = 50.00m L
Using dilution formula again
M₂V₂ = M₃V₃
M₃ = M₂V₂ / V₃
WE SUBSTITUTE
M₃ = ( 0.25 × 2.0) / 50.0
M₃ = 0.0100 M
Therefore the molarity of the solution in volumetric flask "B' is 0.0100 M
<span>8.278 g/mL
The definition of density is mass per volume. So what you need to do is divide the known mass by the known volume. So
1.663 g / 0.2009 mL = 8.27775 g/mL
But you also have to keep track of significant figures. Since both 1.663 and 0.2009 have 4 significant figures each, you need to round the result to 4 significant figures. So
8.27775 g/mL = 8.278 g/mL</span>
<span>To make sure there are enough pollen to fertilize the seeds from the pistil. Not all pollen can make it to the pistil. It's the same as animals producing millions of sperms although only one is needed for fertilization.</span>