Answer:
I literally just learned this last week and if I remember correctly it is Faraday's Law of Induction.
Explanation: Hope this helps also I hope you have/had an amazing day today<3
Answer:
The transmitted intensity through all polarizers is 
Explanation:
According to Malu's law the intensity of a polarized light having an initial intensity
is mathematically represented as

Now considering the polarizer(The polarizing disk) the equation above becomes

Where n is the number of polarizers
Substituting
for the initial intensity 3 for the n and 20° for the angle of rotation


Option (ii) B is the correct option. The object on the moon has greater mass.
To resolve this, utilize the formulas Force = Mass * Acceleration.
The equation can be used to find the mass given the force in Newtons, using 9.8 m/s² for the acceleration of gravity of the earth and 1.6 m/s² for the moon.
Calculating the mass on earth:
30 N = 9.8 m/s² * mass
This results in a mass of 3.0 kg for the object on Earth.
Calculating the mass of the moon:
30 N = 1.6 m/s²2 * mass
Thus, the moon's object has a mass of 19. kg.
This can be explained by the fact that the earth has a stronger gravitational pull than the moon, producing more force per kilogram of mass. As a result, the moon's mass must be bigger to produce the same amount of force at a lower acceleration from gravity (1.6 m/s² vs. 9.8 m/s²).
To know more about Mass, refer to this link :
brainly.com/question/13386792
#SPJ9
I am a competitive figure skater. There are certain turns you can use such as a mowhawk, where you set one foot down that is facing the opposite direction from which you are gliding. There is a two foot turn, where you either go on or toes and turn backwards, or lean somewhat on your heals and turn forwards. Use your hips to help turn. And a 3 turn, which is basically a 2 foot turn on 1 foot. But remember, it takes practice, and you may fall a couple times.
How bright a star appears from Earth is the star's apparent magnitude.