Answer:
Electrons move around a nucleus.
Explanation:
Answer:
Engineering is all about solving problems using math, science, and technical knowledge. And engineers have solved a lot of problems in the world by designing and building various technologies. We have everything from machines that can breathe for you in hospitals to suspension bridges to computers we use every day. All of these things were once designed by engineers using the engineering design process.
Explanation:
c. Isoleucine has a carbon “branched” closer to the alpha carbon than does leucine.
The structure of leucine is CH3CH(<u>CH3</u>)CH2CH(NH2)COOH.
The structure of isoleucine is CH3CH2CH(<u>CH3</u>)CH(NH2)COOH.
In leucine, the CH3 group is <em>two carbons away</em> <em>from</em> the α carbon; in isoleucine, the CH3 group is on the carbon <em>next to</em> the α carbon.
Thus, <em>isoleucine</em> has the closer branched carbon.
“One is charged, the other is not” is i<em>ncorrect</em>. Both compounds are uncharged.
“One has more H-bond acceptors than the other” is <em>incorrect</em>. Each acid has two H-bond acceptors — the N in the amino and the O in the carbonyl group.
“They have different numbers of carbon atoms” is <em>incorrec</em>t. They each contain six carbon atoms.
Answer:
872.28 kJ/mol
Explanation:
The heat released is:
ΔH = C*ΔT
where ΔH is the heat of combustion, C is the heat capacity of the bomb plus water, and ΔT is the rise of temperature. Replacing with data:
ΔH = 9.47*5.72 = 54.1684kJ
A quantity of 1.922 g of methanol in moles are:
moles = mass / molar mass
moles = 1.992/32.04 = 0.0621 mol
Then the molar heat of combustion of methanol is:
ΔH/moles = 54.1684/0.0621 = 872.28 kJ/mol
Answer:
<h2>95.5 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>95.5 moles to 3 sig. figures</h3>
Hope this helps you