Answer:
19.K, potassium
Explanation:
it has all properties of metals
In an exothermic reaction, heat is transferred to the surrounding.
Hope this helps, have a great day ahead!
Answer:
2J/g°C
Explanation:
Q = 5000J
Initial temperature (T1) = 20°C
Final temperature (T2) = 70°C
Specific heat capacity (c) = ?
Heat energy (Q) = mc∇T
Q = mc∇T
Q = mc(T2 - T1)
5000 = 50 × c × (70 - 20)
5000 = 50c × 50
5000 = 2500c
c = 5000 / 2500
c = 2J/g°C
The specific heat capacity of the substance is 2J/g°C
In order for you to get the answer, please have in mind the following situation: To increase the molar concentration of N2O4(g), 2NO2(g) should also increase for equilibrium to occur. Now, this equation is exothermic. By <span>Le Chatelier's principle, equilibrium constant and reaction constants also come into play in terms of increasing or decreasing the temperature. After that I know you can find the answer. </span>
Answer:
4
10
Explanation:
The reaction equation is given as;
Ca(OH)₂ → Ca²⁺ + 2OH⁻
Concentration of Ca(OH)₂ = 5 x 10⁻⁵M
Unknown:
pOH of the solution = ?
pH of the solution = ?
Solution:
Solve for the pOH of this solution using the expression below obtained from the ionic product of water;
pOH = ⁻log₁₀[OH⁻]
Ca(OH)₂ → Ca²⁺ + 2OH⁻
1moldm⁻³ 1moldm⁻³ 2 x 1moldm⁻³
5 x 10⁻⁵moldm⁻³ 5 x 10⁻⁵moldm⁻³ 2( 5 x 10⁻⁵moldm⁻³ )
1 x 10⁻⁴moldm⁻³
Therefore;
pOH = -log₁₀ 1 x 10⁻⁴ = 4
Since
pOH + pH = 14
pH = 14 - 4 = 10