1) Current in each bulb: 0.1 A
The two light bulbs are connected in series, this means that their equivalent resistance is just the sum of the two resistances:

And so, the current through the circuit is (using Ohm's law):

And since the two bulbs are connected in series, the current through each bulb is the same.
2) 4 W and 8 W
The power dissipated by each bulb is given by the formula:

where I is the current and R is the resistance.
For the first bulb:

For the second bulb:

3) 12 W
The total power dissipated in both bulbs is simply the sum of the power dissipated by each bulb, so:

In a moving car the outside looks to be moving. however if viewed from the outside, the car appears to be moving. so motion is relative to the person observing.
Answer:
4.15 m/s
Explanation:
As the total energy must be conserved (neglecting air resistance) the change in gravitational potential energy, must be equal to the change in kinetic energy:
ΔE = ΔK + ΔU =0
If we take as a zero reference level for the gravitational potential energy, the height of the swing seat above the ground, (which is equal to 0.21 m), we can find the initial gravitational energy, considering the height of the point where the seat is released, regarding this point:
h₀ = 1.09 m -0.21 m = 0.88 m
⇒ U₀ = m*g*h₀ = 400 N*0.88 m = 352 J
As Uf = 0, ΔU = Uf -U₀ = -352 J
As the swing starts from rest, K₀=0, so we can say:
ΔK = Kf =
(1)
As ΔK = -ΔU ⇒ ΔK = 352 J (2)
From (1) and (2) we can solve for vf, as follows:

So, when the swing passes through its lowest position, Betty moves at 4.15 m/s.
Answer:
During a chemical reaction, Bromine (Br) would be expected to <u><em>gain 1 valence electron to have a full octet.</em></u>
Explanation:
In the periodic table the elements are ordered so that those with similar chemical properties are located close to each other.
The elements are arranged in horizontal rows, called periods, which coincide with the last electronic layer of the element. That is, an element with five electronic shells will be in the fifth period.
The columns of the table are called groups. The elements that make up each group coincide in their electronic configuration of valence electrons, that is, they have the same number of electrons in their last.
The elements tend to resemble the closest noble gases in terms of their electronic configuration of the last layer, that is, having eight electrons in the last layer to be stable.
Bromine belongs to group 17 (VII A), which indicates that it has 7 electrons in its last shell. So bromine requires more energy to lose all 7 electrons and generate stability, than it does to gain 1 electron and fill in 8 electrons to be stable. So:
<u><em>During a chemical reaction, Bromine (Br) would be expected to gain 1 valence electron to have a full octet.</em></u>