Answer:
The force of static friction acting on the luggage is, Fₓ = 180.32 N
Explanation:
Given data,
The mass of the luggage, m = 23 kg
You pulled the luggage with a force of, F = 77 N
The coefficient of static friction of luggage and floor, μₓ = 0.8
The formula for static frictional force is,
Fₓ = μₓ · η
Where,
η - normal force acting on the luggage 'mg'
Substituting the values in the above equation,
Fₓ = 0.8 x 23 x 9.8
= 180.32 N
Hence, the minimum force require to pull the luggage is, Fₓ = 180.32 N
The amount of heat given by the water to the block of ice can be calculated by using

where

is the mass of the water

is the specific heat capacity of water

is the variation of temperature of the water.
Using these numbers, we find

This is the amount of heat released by the water, but this is exactly equal to the amount of heat absorbed by the ice, used to melt it into water according to the formula:

where

is the mass of the ice while

is the specific latent heat of fusion of the ice.
Re-arranging this formula and using the heat Q that we found previously, we can calculate the mass of the ice:
I believe that the best statement which explains why you can do this is C. <span>The extension cord is made of copper wire, which is a good conductor of electricity; however, it is covered with plastic, an insulator, which does not allow the electrical current to flow to you.
Copper is known to be one of the best conductors of electricity, and plastic can shield you from shock.
</span>