Answer:
– 2.5 m/s²
Explanation:
We have,
• Initial velocity, u = 180 km/h = 50 m/s
• Final velocity, v = 0 m/s (it stops)
• Time taken, t = 20 seconds
We have to find acceleration, a.
a = (v ― u)/t
a = (0 – 50)/20 m/s²
a = –50/20 m/s²
a = – 5/2 m/s²
a = – 2.5 m/s² (Velocity is decreasing) [Answer]
Answer:
(a) the force is 8.876 N
(b) the magnitude of each charge is 4.085 μC
Explanation:
Part (a)
Given;
coulomb's constant, K = 8.99 x 10⁹ N.m²/C²
distance between two charges, r = 10 cm = 0.1 m
force between the two charges, F = 15 N
when the distance between the charges changes to 13 cm (0.13 m)
force between the two charges, F = ?
Apply Coulomb's law;

Part (b)
the magnitude of each charge, if they have equal magnitude

where;
F is the force between the charges
K is Coulomb's constant
Q is the charge
r is the distance between the charges

Answer:
A blackbody, or Planckian radiator, is a cavity within a heated material from which heat cannot escape. No matter what the material, the walls of the cavity exhibit a characteristic spectral emission, which is a function of its temperature.
Example:
Emission from a blackbody is temperature dependent and at high temperature, a blackbody will emit a spectrum of photon energies that span the visible range, and therefore it will appear white. The Sun is an example of a high-temperature blackbody.
Answer:
In bringing you to a halt, the sand and the water exert the same impulse on you, but the sand exerts a greater average force
Explanation:
One is their traits and their characterists that they have in common